Eos/eos/psgjjr/crypto.py

85 lines
3.1 KiB
Python
Raw Normal View History

2017-09-25 18:03:43 +10:00
# Eos - Verifiable elections
# Copyright © 2017 RunasSudo (Yingtong Li)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from eos.core.bigint import *
from eos.core.objects import *
class CyclicGroup(EmbeddedObject):
p = EmbeddedObjectField(BigInt)
g = EmbeddedObjectField(BigInt)
@property
def q(self):
# p = 2q + 1
return (self.p - ONE) // TWO
def random_element(self, crypto_random=True):
crypto_method = BigInt.crypto_random if crypto_random else BigInt.noncrypto_random
return crypto_method(ONE, self.p - ONE)
# RFC 3526
DEFAULT_GROUP = CyclicGroup(
p=BigInt('FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF', 16),
g=TWO
)
class EGPublicKey(EmbeddedObject):
group = EmbeddedObjectField(CyclicGroup)
X = EmbeddedObjectField(BigInt)
# HAC 8.18
def encrypt(self, message):
# Choose an element 1 <= k <= p - 2
k = BigInt.crypto_random(ONE, self.group.p - TWO)
gamma = pow(self.group.g, k, self.group.p)
delta = (message * pow(self.X, k, self.group.p)) % self.group.p
return EGCiphertext(public_key=self, gamma=gamma, delta=delta)
class EGPrivateKey(EmbeddedObject):
public_key = EmbeddedObjectField(EGPublicKey)
x = EmbeddedObjectField(BigInt)
# HAC 8.17
@staticmethod
def generate():
# Choose an element 1 <= x <= p - 2
x = BigInt.crypto_random(ONE, DEFAULT_GROUP.p - TWO)
# Calculate the public key as G^x
X = pow(DEFAULT_GROUP.g, x, DEFAULT_GROUP.p)
pk = EGPublicKey(group=DEFAULT_GROUP, X=X)
sk = EGPrivateKey(public_key=pk, x=x)
return sk
# HAC 8.18
def decrypt(self, ciphertext):
if (
ciphertext.gamma <= ZERO or ciphertext.gamma >= self.public_key.group.p or
ciphertext.delta <= ZERO or ciphertext.delta >= self.public_key.group.p
):
raise Exception('Ciphertext is malformed')
gamma_inv = pow(ciphertext.gamma, self.public_key.group.p - ONE - self.x, self.public_key.group.p)
return (gamma_inv * ciphertext.delta) % self.public_key.group.p
class EGCiphertext(EmbeddedObject):
public_key = EmbeddedObjectField(EGPublicKey)
gamma = EmbeddedObjectField(BigInt) # G^k
delta = EmbeddedObjectField(BigInt) # M X^k