Eos/eos/psr/mixnet.py

83 lines
2.9 KiB
Python
Raw Normal View History

# Eos - Verifiable elections
# Copyright © 2017 RunasSudo (Yingtong Li)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from eos.core.bigint import *
from eos.core.objects import *
from eos.psr.election import *
class RPCMixnet:
def __init__(self):
self.params = []
def random_permutation(self, n):
permutation = list(range(n))
# Fisher-Yates shuffle
i = n
while i != 0:
rnd = BigInt.crypto_random(0, i - 1)
rnd = rnd.__int__()
i -= 1
permutation[rnd], permutation[i] = permutation[i], permutation[rnd]
return permutation
def shuffle(self, encrypted_answers):
shuffled_answers = [None] * len(encrypted_answers)
permutations = self.random_permutation(len(encrypted_answers))
permutations_and_reenc = []
for i in range(len(encrypted_answers)):
encrypted_answer = encrypted_answers[i]
# Reencrypt the answer
shuffled_blocks = []
block_reencryptions = []
for block in encrypted_answer.blocks:
block2, reenc = block.reencrypt()
shuffled_blocks.append(block2)
block_reencryptions.append(reenc)
# And shuffle it to the new position
shuffled_answers[permutations[i]] = BlockEncryptedAnswer(blocks=shuffled_blocks)
# Record the parameters
permutations_and_reenc.append([permutations[i], block_reencryptions, block.public_key.group.random_element(), block.public_key.group.random_element()])
commitments_left = []
for i in range(len(permutations_and_reenc)):
val = permutations_and_reenc[i]
val_json = [val[0], [str(x) for x in val[1]], str(val[2])]
commitments_left.append(EosObject.to_sha256(EosObject.to_json(val_json))[0])
commitments_right = []
for i in range(len(permutations_and_reenc)):
# Find the answer that went to 'i'
idx = next(idx for idx in range(len(permutations_and_reenc)) if permutations_and_reenc[idx][0] == i)
val = permutations_and_reenc[idx]
val_json = [idx, [str(x) for x in val[1]], str(val[3])]
commitments_right.append(EosObject.to_sha256(EosObject.to_json(val_json))[0])
self.params = permutations_and_reenc
return shuffled_answers, commitments_left, commitments_right
def challenge(self, i, is_left):
if is_left:
val = self.params[i]
return [val[0], val[1], val[2]]
else:
idx = next(idx for idx in range(len(self.params)) if self.params[idx][0] == i)
val = self.params[idx]
return [idx, val[1], val[3]]