Eos/eos/psr/tests.py
2018-01-11 19:06:21 +08:00

402 lines
13 KiB
Python

# Eos - Verifiable elections
# Copyright © 2017-18 RunasSudo (Yingtong Li)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from eos.core.tests import *
from eos.core.objects import *
from eos.core.bigint import *
from eos.core.hashing import *
from eos.psr.bitstream import *
from eos.psr.crypto import *
from eos.psr.election import *
from eos.psr.mixnet import *
from eos.psr.secretsharing import *
from eos.psr.workflow import *
from eos.core.objects import __pragma__
class GroupValidityTestCase(EosTestCase):
# HAC 4.24
def miller_rabin_test(self, n, t):
# Write n - 1 = 2^s * r such that r is odd
s = 0
r = n - ONE
while r % TWO == ZERO:
r = r // TWO
s = s + 1
for _ in range(t):
a = BigInt.noncrypto_random(TWO, n - TWO)
y = pow(a, r, n)
if y != ONE and y != (n - ONE):
j = 1
while j <= s - 1 and y != (n - ONE):
y = pow(y, TWO, n)
if y == ONE:
return False
j = j + 1
if y != (n - ONE):
return False
return True
@py_only
def test_miller_rabin(self):
self.assertTrue(self.miller_rabin_test(BigInt('7'), 30))
self.assertFalse(self.miller_rabin_test(BigInt('35'), 30))
self.assertTrue(self.miller_rabin_test(BigInt('15485863'), 30))
self.assertFalse(self.miller_rabin_test(BigInt('502560280658509'), 30)) # 15485863 * 32452843
@py_only
def test_default_group_validity(self):
self.assertTrue(self.miller_rabin_test(DEFAULT_GROUP.p, 30))
self.assertTrue(self.miller_rabin_test(DEFAULT_GROUP.q, 30))
# Since the subgroup G_q is of prime order q, g != 1 is a generator
class EGTestCase(EosTestCase):
def test_eg(self):
pt = DEFAULT_GROUP.random_Zq_element()
sk = EGPrivateKey.generate()
ct = sk.public_key.encrypt(pt)
proved_pt = sk.decrypt_and_prove(ct)
m = proved_pt.message
self.assertEqualJSON(pt, m)
self.assertTrue(proved_pt.is_proof_valid())
class SEGTestCase(EosTestCase):
def test_eg(self):
pt = DEFAULT_GROUP.random_Zq_element()
sk = SEGPrivateKey.generate()
ct = sk.public_key.encrypt(pt)
self.assertTrue(ct.is_signature_valid())
m = sk.decrypt(ct)
self.assertEqualJSON(pt, m)
ct2, _ = ct.reencrypt()
m2 = sk.decrypt(ct2)
self.assertEqualJSON(pt, m2)
class BitStreamTestCase(EosTestCase):
def test_bitstream(self):
bs = BitStream(BigInt('100101011011', 2))
self.assertEqual(bs.read(4), 0b1001)
self.assertEqual(bs.read(4), 0b0101)
self.assertEqual(bs.read(4), 0b1011)
bs = BitStream()
bs.write(BigInt('100101011011', 2))
bs.seek(0)
self.assertEqual(bs.read(4), 0b1001)
self.assertEqual(bs.read(4), 0b0101)
self.assertEqual(bs.read(4), 0b1011)
bs.seek(4)
bs.write(BigInt('11', 2))
bs.seek(0)
self.assertEqual(bs.read(4), 0b1001)
self.assertEqual(bs.read(4), 0b1101)
self.assertEqual(bs.read(4), 0b0110)
self.assertEqual(bs.read(2), 0b11)
def test_bitstream_map(self):
bs = BitStream(BigInt('100101011011', 2))
result = bs.map(lambda x: x, 4)
expect = [0b1001, 0b0101, 0b1011]
for i in range(len(expect)):
self.assertEqual(result[i], expect[i])
def test_strings(self):
bs = BitStream()
bs.write_string('Hello World!')
bs.seek(0)
self.assertEqual(bs.read(32), len('Hello World!'))
bs.seek(0)
self.assertEqual(bs.read_string(), 'Hello World!')
class BlockEGTestCase(EosTestCase):
@classmethod
def setUpClass(cls):
class Person(TopLevelObject):
name = StringField()
address = StringField(default=None)
def say_hi(self):
return 'Hello! My name is ' + self.name
cls.Person = Person
#cls.test_group = CyclicGroup(p=BigInt('11'), g=BigInt('2'))
cls.test_group = CyclicGroup(p=BigInt('283'), g=BigInt('60'))
cls.sk = EGPrivateKey.generate(cls.test_group)
def test_basic(self):
pt = BigInt('11010010011111010100101', 2)
ct = BitStream(pt).multiple_of(self.sk.public_key.nbits()).map(self.sk.public_key.encrypt, self.sk.public_key.nbits())
for ct_block in ct:
self.assertTrue(ct_block.gamma < self.test_group.p)
self.assertTrue(ct_block.delta < self.test_group.p)
m = BitStream.unmap(ct, self.sk.decrypt, self.sk.public_key.nbits()).read()
self.assertEqualJSON(pt, m)
def test_object(self):
obj = self.Person(name='John Smith')
ct = BlockEncryptedAnswer.encrypt(self.sk.public_key, obj)
_, m = ct.decrypt(self.sk)
self.assertEqualJSON(obj, m)
# Force another block
ct2 = BlockEncryptedAnswer.encrypt(self.sk.public_key, obj, (len(ct.blocks) * self.sk.public_key.nbits()) + 1)
self.assertEqual(len(ct2.blocks), len(ct.blocks) + 1)
_, m = ct2.decrypt(self.sk)
self.assertEqualJSON(obj, m)
class MixnetTestCase(EosTestCase):
@py_only
def test_mixnet(self):
# Generate key
sk = SEGPrivateKey.generate()
# Generate plaintexts
pts = []
for _ in range(4):
pts.append(sk.public_key.group.random_Zq_element())
# Encrypt plaintexts
answers = []
for pt in pts:
bs = BitStream(pt)
bs.multiple_of(sk.public_key.nbits())
ct = bs.map(sk.public_key.encrypt, sk.public_key.nbits())
answers.append(BlockEncryptedAnswer(blocks=ct))
def do_mixnet(mix_order):
# Set up mixnet
mixnet = RPCMixnet(mix_order=mix_order)
# Mix answers
shuffled_answers, commitments = mixnet.shuffle(answers)
# Decrypt shuffle
msgs = []
for shuffled_answer in shuffled_answers:
bs = BitStream.unmap(shuffled_answer.blocks, sk.decrypt, sk.public_key.nbits())
m = bs.read()
msgs.append(m)
# Check decryption
self.assertEqual(set(int(x) for x in pts), set(int(x) for x in msgs))
# Check commitments
def verify_shuffle(idx_left, idx_right, reencs):
claimed_blocks = shuffled_answers[idx_right].blocks
for j in range(len(answers[idx_left].blocks)):
reencrypted_block, _ = answers[idx_left].blocks[j].reencrypt(reencs[j])
self.assertEqual(claimed_blocks[j].gamma, reencrypted_block.gamma)
self.assertEqual(claimed_blocks[j].delta, reencrypted_block.delta)
for i in range(len(pts)):
val_obj = mixnet.challenge(i)
self.assertEqual(commitments[i], SHA256().update_obj(val_obj).hash_as_bigint())
if mixnet.is_left:
verify_shuffle(val_obj.challenge_index, val_obj.response_index, val_obj.reenc)
else:
verify_shuffle(val_obj.response_index, val_obj.challenge_index, val_obj.reenc)
# NB: This isn't doing it in sequence, it's just testing a left mixnet and a right mixnet respectively
do_mixnet(0)
do_mixnet(1)
class ElectionTestCase(EosTestCase):
@classmethod
def setUpClass(cls):
cls.db_connect_and_reset()
def do_task_assert(self, election, task, next_task):
self.assertEqual(election.workflow.get_task(task).status, WorkflowTaskStatus.READY)
if next_task is not None:
self.assertEqual(election.workflow.get_task(next_task).status, WorkflowTaskStatus.NOT_READY)
election.workflow.get_task(task).enter()
self.assertEqual(election.workflow.get_task(task).status, WorkflowTaskStatus.EXITED)
if next_task is not None:
self.assertEqual(election.workflow.get_task(next_task).status, WorkflowTaskStatus.READY)
@py_only
def test_run_election(self):
# Set up election
election = PSRElection()
election.workflow = PSRWorkflow()
# Set election details
election.name = 'Test Election'
for i in range(3):
voter = Voter(name=['Alice', 'Bob', 'Charlie'][i])
election.voters.append(voter)
for _ in range(3):
mixing_trustee = InternalMixingTrustee()
election.mixing_trustees.append(mixing_trustee)
election.sk = EGPrivateKey.generate()
election.public_key = election.sk.public_key
question = ApprovalQuestion(prompt='President', choices=[Choice(name='John Smith'), Choice(name='Joe Bloggs'), Choice(name='John Q. Public')])
election.questions.append(question)
question = ApprovalQuestion(prompt='Chairman', choices=[Choice(name='John Doe'), Choice(name='Andrew Citizen')])
election.questions.append(question)
election.save()
# Freeze election
self.do_task_assert(election, 'eos.base.workflow.TaskConfigureElection', 'eos.base.workflow.TaskOpenVoting')
election_hash = SHA256().update_obj(election).hash_as_b64() # Keep track of the hash and make sure it doesn't change
# Open voting
self.do_task_assert(election, 'eos.base.workflow.TaskOpenVoting', 'eos.base.workflow.TaskCloseVoting')
election.save()
# Cast ballots
VOTES = [[[0], [0]], [[0, 1], [1]], [[2], [0]]]
for i in range(3):
ballot = Ballot(election_id=election._id, election_hash=election_hash)
for j in range(2):
answer = ApprovalAnswer(choices=VOTES[i][j])
encrypted_answer = BlockEncryptedAnswer.encrypt(election.sk.public_key, answer)
ballot.encrypted_answers.append(encrypted_answer)
vote = Vote(voter_id=election.voters[i]._id, ballot=ballot, cast_at=DateTimeField.now())
vote.save()
#election.save()
# Close voting
self.do_task_assert(election, 'eos.base.workflow.TaskCloseVoting', 'eos.psr.workflow.TaskMixVotes')
election.save()
# Mix votes
self.do_task_assert(election, 'eos.psr.workflow.TaskMixVotes', 'eos.psr.workflow.TaskProveMixes')
election.save()
# Prove mixes
self.do_task_assert(election, 'eos.psr.workflow.TaskProveMixes', 'eos.base.workflow.TaskDecryptVotes')
election.save()
# Verify mixes
for i in range(len(election.questions)):
for j in range(len(election.mixing_trustees)):
election.mixing_trustees[j].verify(i)
# Decrypt votes, for realsies
self.do_task_assert(election, 'eos.base.workflow.TaskDecryptVotes', 'eos.base.workflow.TaskReleaseResults')
election.save()
# Check result
RESULTS = [[EosList(voter[i]) for voter in VOTES] for i in range(len(election.questions))]
for i in range(len(RESULTS)):
votes1 = RESULTS[i]
votes2 = [x.choices for x in election.results[i].answers]
self.assertEqual(sorted(votes1), sorted(votes2))
# Release result
self.do_task_assert(election, 'eos.base.workflow.TaskReleaseResults', None)
election.save()
# Check the hash hasn't changed during that
self.assertEqual(SHA256().update_obj(election).hash_as_b64(), election_hash)
# Check the election verifies
election.verify()
class PVSSTestCase(EosTestCase):
@py_only
def test_basic(self):
return
setup = PedersenVSSSetup()
setup.group = DEFAULT_GROUP
setup.threshold = 3 # 3 of 5
for _ in range(5):
participant = PedersenVSSParticipant(setup)
participant.sk = EGPrivateKey.generate()
participant.pk = participant.sk.public_key
setup.participants.append(participant)
# Step 1
for participant in setup.participants:
participant.commit_pk_share()
# IRL: Send hi=F[0] commitments around
# Send shares around
for participant in setup.participants:
for j in range(len(setup.participants)):
other = setup.participants[j]
share = participant.get_share_for(j)
#share_dec = other.sk.decrypt(share)
share_dec = BitStream.unmap(share, other.sk.decrypt, other.sk.public_key.nbits()).read_bigint()
other.shares_received.append(share_dec)
# Step 2
# IRL: Decommit hi=F[0], send F around
# Verify shares
for i in range(len(setup.participants)):
participant = setup.participants[i]
for j in range(len(setup.participants)):
other = setup.participants[j]
# Verify share received by other from participant
share_dec = other.shares_received[i]
g_share_dec_expected = ONE
for k in range(setup.threshold):
g_share_dec_expected = (g_share_dec_expected * pow(participant.F[k], pow(j + 1, k), setup.group.p)) % setup.group.p
if pow(setup.group.g, share_dec, setup.group.p) != g_share_dec_expected:
raise Exception('Share not consistent with commitments')
# Compute threshold public key
pk = setup.compute_public_key()
# Compute secret key shares
for participant in setup.participants:
participant.compute_secret_key()
# Encrypt data
pt = pk.group.random_Zq_element()
ct = pk.encrypt(pt)
# Decrypt data
decryption_shares = []
# Pick any threshold
__pragma__('skip')
import random
__pragma__('noskip')
threshold_participants = list(range(len(setup.participants)))
random.shuffle(threshold_participants)
threshold_participants = threshold_participants[:setup.threshold]
for i in setup.threshold:
share = setup.participants[i].threshold_sk.decrypt(ct)
decryption_shares.append((i, share))
m = setup.combine_decryptions(decryption_shares)
self.assertEqualJSON(pt, m)