212 lines
7.3 KiB
Python
212 lines
7.3 KiB
Python
# Eos - Verifiable elections
|
|
# Copyright © 2017 RunasSudo (Yingtong Li)
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU Affero General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU Affero General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Affero General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
from eos.core.bigint import *
|
|
from eos.core.objects import *
|
|
from eos.base.election import *
|
|
|
|
class CyclicGroup(EmbeddedObject):
|
|
p = EmbeddedObjectField(BigInt)
|
|
g = EmbeddedObjectField(BigInt)
|
|
|
|
@property
|
|
def q(self):
|
|
# p = 2q + 1
|
|
return (self.p - ONE) // TWO
|
|
|
|
def random_element(self, crypto_random=True):
|
|
crypto_method = BigInt.crypto_random if crypto_random else BigInt.noncrypto_random
|
|
return crypto_method(ONE, self.p - ONE)
|
|
|
|
# RFC 3526
|
|
DEFAULT_GROUP = CyclicGroup(
|
|
p=BigInt('FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF', 16),
|
|
g=TWO
|
|
)
|
|
|
|
class EGPublicKey(EmbeddedObject):
|
|
group = EmbeddedObjectField(CyclicGroup)
|
|
X = EmbeddedObjectField(BigInt)
|
|
|
|
# HAC 8.18
|
|
def encrypt(self, message):
|
|
message += ONE # Dodgy hack to allow zeroes
|
|
|
|
if message <= ZERO:
|
|
raise Exception('Invalid message')
|
|
if message >= self.group.p:
|
|
raise Exception('Invalid message')
|
|
|
|
# Choose an element 1 <= k <= p - 2
|
|
k = BigInt.crypto_random(ONE, self.group.p - TWO)
|
|
|
|
gamma = pow(self.group.g, k, self.group.p)
|
|
delta = (message * pow(self.X, k, self.group.p)) % self.group.p
|
|
|
|
return EGCiphertext(public_key=self, gamma=gamma, delta=delta)
|
|
|
|
class EGPrivateKey(EmbeddedObject):
|
|
pk_class = EGPublicKey
|
|
|
|
public_key = EmbeddedObjectField(EGPublicKey)
|
|
x = EmbeddedObjectField(BigInt)
|
|
|
|
# HAC 8.17
|
|
@classmethod
|
|
def generate(cls, group=DEFAULT_GROUP):
|
|
# Choose an element 1 <= x <= p - 2
|
|
x = BigInt.crypto_random(ONE, group.p - TWO)
|
|
# Calculate the public key as G^x
|
|
X = pow(group.g, x, group.p)
|
|
|
|
pk = cls.pk_class(group=group, X=X)
|
|
sk = cls(public_key=pk, x=x)
|
|
return sk
|
|
|
|
# HAC 8.18
|
|
def decrypt(self, ciphertext):
|
|
if (
|
|
ciphertext.gamma <= ZERO or ciphertext.gamma >= self.public_key.group.p or
|
|
ciphertext.delta <= ZERO or ciphertext.delta >= self.public_key.group.p
|
|
):
|
|
raise Exception('Ciphertext is malformed')
|
|
|
|
gamma_inv = pow(ciphertext.gamma, self.public_key.group.p - ONE - self.x, self.public_key.group.p)
|
|
|
|
pt = (gamma_inv * ciphertext.delta) % self.public_key.group.p
|
|
return pt - ONE
|
|
|
|
class EGCiphertext(EmbeddedObject):
|
|
public_key = EmbeddedObjectField(EGPublicKey)
|
|
gamma = EmbeddedObjectField(BigInt) # G^k
|
|
delta = EmbeddedObjectField(BigInt) # M X^k
|
|
|
|
def reencrypt(self, k=None):
|
|
# Generate an encryption of one
|
|
if k is None:
|
|
k = BigInt.crypto_random(ONE, self.public_key.group.p - TWO)
|
|
gamma = pow(self.public_key.group.g, k, self.public_key.group.p)
|
|
delta = pow(self.public_key.X, k, self.public_key.group.p)
|
|
|
|
return EGCiphertext(public_key=self.public_key, gamma=((self.gamma * gamma) % self.public_key.group.p), delta=((self.delta * delta) % self.public_key.group.p)), k
|
|
|
|
# Signed ElGamal per Schnorr & Jakobssen
|
|
class SEGPublicKey(EGPublicKey):
|
|
def encrypt(self, message):
|
|
message += ONE # Dodgy hack to allow zeroes
|
|
|
|
if message <= ZERO:
|
|
raise Exception('Invalid message')
|
|
if message >= self.group.p:
|
|
raise Exception('Invalid message')
|
|
|
|
# Choose an element 1 <= k <= p - 2
|
|
r = BigInt.crypto_random(ONE, self.group.p - TWO)
|
|
s = BigInt.crypto_random(ONE, self.group.p - TWO)
|
|
|
|
gamma = pow(self.group.g, r, self.group.p) # h
|
|
delta = (message * pow(self.X, r, self.group.p)) % self.group.p # f
|
|
|
|
_, c = EosObject.to_sha256(str(pow(self.group.g, s, self.group.p)), str(gamma), str(delta))
|
|
|
|
z = s + c*r
|
|
|
|
return SEGCiphertext(public_key=self, gamma=gamma, delta=delta, c=c, z=z)
|
|
|
|
class SEGPrivateKey(EGPrivateKey):
|
|
pk_class = SEGPublicKey
|
|
|
|
class SEGCiphertext(EGCiphertext):
|
|
public_key = EmbeddedObjectField(SEGPublicKey)
|
|
c = EmbeddedObjectField(BigInt)
|
|
z = EmbeddedObjectField(BigInt)
|
|
|
|
def is_signature_valid(self):
|
|
gs = (pow(self.public_key.group.g, self.z, self.public_key.group.p) * pow(self.gamma, self.public_key.group.p - ONE - self.c, self.public_key.group.p)) % self.public_key.group.p
|
|
_, c = EosObject.to_sha256(str(gs), str(self.gamma), str(self.delta))
|
|
|
|
return self.c == c
|
|
|
|
class BlockEncryptedAnswer(EncryptedAnswer):
|
|
blocks = EmbeddedObjectListField()
|
|
|
|
def decrypt(self):
|
|
# TODO
|
|
raise Exception('NYI')
|
|
|
|
class RPCMixnet:
|
|
def __init__(self):
|
|
self.params = []
|
|
|
|
def random_permutation(self, n):
|
|
permutation = list(range(n))
|
|
# Fisher-Yates shuffle
|
|
i = n
|
|
while i != 0:
|
|
rnd = BigInt.crypto_random(0, i - 1)
|
|
rnd = rnd.__int__()
|
|
i -= 1
|
|
permutation[rnd], permutation[i] = permutation[i], permutation[rnd]
|
|
return permutation
|
|
|
|
def shuffle(self, encrypted_answers):
|
|
shuffled_answers = [None] * len(encrypted_answers)
|
|
permutations = self.random_permutation(len(encrypted_answers))
|
|
|
|
permutations_and_reenc = []
|
|
|
|
for i in range(len(encrypted_answers)):
|
|
encrypted_answer = encrypted_answers[i]
|
|
|
|
# Reencrypt the answer
|
|
shuffled_blocks = []
|
|
block_reencryptions = []
|
|
for block in encrypted_answer.blocks:
|
|
block2, reenc = block.reencrypt()
|
|
shuffled_blocks.append(block2)
|
|
block_reencryptions.append(reenc)
|
|
# And shuffle it to the new position
|
|
shuffled_answers[permutations[i]] = BlockEncryptedAnswer(blocks=shuffled_blocks)
|
|
# Record the parameters
|
|
permutations_and_reenc.append([permutations[i], block_reencryptions, block.public_key.group.random_element(), block.public_key.group.random_element()])
|
|
|
|
commitments_left = []
|
|
for i in range(len(permutations_and_reenc)):
|
|
val = permutations_and_reenc[i]
|
|
val_json = [val[0], [str(x) for x in val[1]], str(val[2])]
|
|
commitments_left.append(EosObject.to_sha256(EosObject.to_json(val_json))[0])
|
|
|
|
commitments_right = []
|
|
for i in range(len(permutations_and_reenc)):
|
|
# Find the answer that went to 'i'
|
|
idx = next(idx for idx in range(len(permutations_and_reenc)) if permutations_and_reenc[idx][0] == i)
|
|
val = permutations_and_reenc[idx]
|
|
|
|
val_json = [idx, [str(x) for x in val[1]], str(val[3])]
|
|
commitments_right.append(EosObject.to_sha256(EosObject.to_json(val_json))[0])
|
|
|
|
self.params = permutations_and_reenc
|
|
return shuffled_answers, commitments_left, commitments_right
|
|
|
|
def challenge(self, i, is_left):
|
|
if is_left:
|
|
val = self.params[i]
|
|
return [val[0], val[1], val[2]]
|
|
else:
|
|
idx = next(idx for idx in range(len(self.params)) if self.params[idx][0] == i)
|
|
val = self.params[idx]
|
|
return [idx, val[1], val[3]]
|