/* OpenTally: Open-source election vote counting * Copyright © 2021 Lee Yingtong Li (RunasSudo) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ use ndarray::{Array, Dimension, IxDyn}; use std::fmt; use std::ops; #[derive(Debug)] enum ConstraintError { NoConformantResult, } #[derive(Clone)] struct ConstraintMatrixCell { elected: usize, min: usize, max: usize, cands: usize, } struct ConstraintMatrix(Array); impl ConstraintMatrix { pub fn new(constraints: &mut [usize]) -> Self { // Add 1 to dimensions for totals cells for c in constraints.iter_mut() { *c += 1; } return Self(Array::from_elem( IxDyn(constraints), ConstraintMatrixCell { elected: 0, min: 0, max: 0, cands: 0, } )); } pub fn init(&mut self) { let indices: Vec = ndarray::indices(self.0.shape()).into_iter().collect(); // Compute candidate totals self.recount_cands(); // Initialise max for grand total cell let idx = IxDyn(&vec![0; self.0.ndim()][..]); self.0[&idx].max = self.0[&idx].cands; // Initialise max for inner cells (>=2 zeroes) for idx in indices.iter() { if (0..idx.ndim()).fold(0, |acc, d| if idx[d] != 0 { acc + 1 } else { acc }) < 2 { continue; } self.0[idx].max = self.0[idx].cands; } // NB: Bounds on min, max, etc. will be further refined in initial step() calls } pub fn recount_cands(&mut self) { let shape = Vec::from(self.0.shape()); let indices: Vec = ndarray::indices(self.0.shape()).into_iter().collect(); // Compute cands/elected totals for nzeroes in 1..self.0.ndim()+1 { for idx in indices.iter() { // First compute totals cells with 1 zero, then 2 zeroes, ... then grand total (all zeroes) if (0..idx.ndim()).fold(0, |acc, d| if idx[d] == 0 { acc + 1 } else { acc }) != nzeroes { continue; } self.0[idx].cands = 0; self.0[idx].elected = 0; // The axis along which to sum - if multiple, just pick the first, as these should agree let zero_axis = (0..idx.ndim()).filter(|d| idx[*d] == 0).next().unwrap(); // Traverse along the axis and sum the candidates let mut idx2 = idx.clone(); for coord in 1..shape[zero_axis] { idx2[zero_axis] = coord; self.0[idx].cands += self.0[&idx2].cands; self.0[idx].elected += self.0[&idx2].elected; } } } } pub fn step(&mut self) -> Result { let shape = Vec::from(self.0.shape()); let indices: Vec = ndarray::indices(self.0.shape()).into_iter().collect(); for idx in indices.iter() { let cell = &mut self.0[idx]; // Rule 1: Ensure elected < min < max < cands if cell.min < cell.elected { cell.min = cell.elected; return Ok(false); } if cell.max > cell.cands { cell.max = cell.cands; return Ok(false); } if cell.min > cell.max { return Err(ConstraintError::NoConformantResult); } let nzeroes = (0..idx.ndim()).fold(0, |acc, d| if idx[d] == 0 { acc + 1 } else { acc }); // Rule 2/3: Ensure min/max is possible in inner cells if nzeroes == 0 { for axis in 0..self.0.ndim() { let mut idx2 = idx.clone(); // What is the min/max number of candidates that can be elected from other cells in this axis? let (other_max, other_min) = (1..shape[axis]).fold((0, 0), |(acc_max, acc_min), coord| { if coord == idx[axis] { return (acc_max, acc_min); } idx2[axis] = coord; return (acc_max + self.0[&idx2].max, acc_min + self.0[&idx2].min); }); // What is the min/max number of candidates that can be elected along this axis? idx2[axis] = 0; let axis_max = self.0[&idx2].max; let axis_min = self.0[&idx2].min; // How many must be elected from this cell? let this_max = (axis_max as i32) - (other_min as i32); let this_min = (axis_min as i32) - (other_max as i32); if this_max < (self.0[idx].max as i32) { self.0[idx].max = this_max as usize; return Ok(false); } if this_min > (self.0[idx].min as i32) { self.0[idx].min = this_min as usize; return Ok(false); } } } // Rule 4/5: Ensure min/max is possible in totals cells if nzeroes > 0 { for axis in 0..self.0.ndim() { if idx[axis] != 0 { continue; } // What is the total min/max along this axis? let mut idx2 = idx.clone(); let (axis_max, axis_min) = (1..shape[axis]).fold((0, 0), |(acc_max, acc_min), coord| { idx2[axis] = coord; return (acc_max + self.0[&idx2].max, acc_min + self.0[&idx2].min); }); if axis_max < self.0[idx].max { self.0[idx].max = axis_max; return Ok(false); } if axis_min > self.0[idx].min { self.0[idx].min = axis_min; return Ok(false); } } } } return Ok(true); } } impl fmt::Display for ConstraintMatrix { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result { let shape = self.0.shape(); let mut result = String::new(); // TODO: ≠2 dimensions for y in 0..shape[1] { result.push_str("+"); for _ in 0..shape[0] { result.push_str(if y == 1 { "=============+" } else { "-------------+" }); } result.push_str("\n"); result.push_str("|"); for x in 0..shape[0] { result.push_str(&format!(" Elected: {:2}", self[&[x, y]].elected)); result.push_str(if x == 0 { " ‖" } else { " |" }); } result.push_str("\n"); result.push_str("|"); for x in 0..shape[0] { result.push_str(&format!(" Min: {:2}", self[&[x, y]].min)); result.push_str(if x == 0 { " ‖" } else { " |" }); } result.push_str("\n"); result.push_str("|"); for x in 0..shape[0] { result.push_str(&format!(" Max: {:2}", self[&[x, y]].max)); result.push_str(if x == 0 { " ‖" } else { " |" }); } result.push_str("\n"); result.push_str("|"); for x in 0..shape[0] { result.push_str(&format!(" Cands: {:2}", self[&[x, y]].cands)); result.push_str(if x == 0 { " ‖" } else { " |" }); } result.push_str("\n"); } result.push_str("+"); for _ in 0..shape[0] { result.push_str("-------------+"); } result.push_str("\n"); return f.write_str(&result); } } impl ops::Index<&[usize]> for ConstraintMatrix { type Output = ConstraintMatrixCell; fn index(&self, index: &[usize]) -> &Self::Output { &self.0[index] } } impl ops::IndexMut<&[usize]> for ConstraintMatrix { fn index_mut(&mut self, index: &[usize]) -> &mut Self::Output { &mut self.0[index] } } #[cfg(test)] mod tests { use super::*; fn assert_cell(cm: &ConstraintMatrix, idx: &[usize], elected: usize, min: usize, max: usize, cands: usize) { assert_eq!(cm[idx].elected, elected, "Failed to validate elected at {:?}", idx); assert_eq!(cm[idx].min, min, "Failed to validate min at {:?}", idx); assert_eq!(cm[idx].max, max, "Failed to validate min at {:?}", idx); assert_eq!(cm[idx].cands, cands, "Failed to validate cands at {:?}", idx); } #[test] fn cm_otten() { let mut cm = ConstraintMatrix::new(&mut [3, 2]); // Totals let c = &mut cm[&[0, 1]]; c.min = 7; c.max = 7; let c = &mut cm[&[0, 2]]; c.min = 7; c.max = 7; let c = &mut cm[&[1, 0]]; c.min = 7; c.max = 7; let c = &mut cm[&[2, 0]]; c.min = 6; c.max = 6; let c = &mut cm[&[3, 0]]; c.min = 1; c.max = 1; // Candidates let c = &mut cm[&[1, 1]]; c.cands = 4; let c = &mut cm[&[2, 1]]; c.cands = 11; let c = &mut cm[&[3, 1]]; c.cands = 2; let c = &mut cm[&[1, 2]]; c.cands = 7; let c = &mut cm[&[2, 2]]; c.cands = 3; let c = &mut cm[&[3, 2]]; c.cands = 1; // Init cm.init(); while !cm.step().expect("No conformant result") {} println!("{}", cm); assert_cell(&cm, &[1, 1], 0, 0, 4, 4); assert_cell(&cm, &[2, 1], 0, 3, 6, 11); assert_cell(&cm, &[3, 1], 0, 0, 1, 2); assert_cell(&cm, &[0, 1], 0, 7, 7, 17); assert_cell(&cm, &[1, 2], 0, 3, 7, 7); assert_cell(&cm, &[2, 2], 0, 0, 3, 3); assert_cell(&cm, &[3, 2], 0, 0, 1, 1); assert_cell(&cm, &[0, 2], 0, 7, 7, 11); assert_cell(&cm, &[1, 0], 0, 7, 7, 11); assert_cell(&cm, &[2, 0], 0, 6, 6, 14); assert_cell(&cm, &[3, 0], 0, 1, 1, 3); assert_cell(&cm, &[0, 0], 0, 14, 14, 28); // Election of Welsh man cm[&[3, 1]].elected += 1; cm.recount_cands(); while !cm.step().expect("No conformant result") {} println!("{}", cm); assert_cell(&cm, &[1, 1], 0, 0, 3, 4); assert_cell(&cm, &[2, 1], 0, 3, 6, 11); assert_cell(&cm, &[3, 1], 1, 1, 1, 2); assert_cell(&cm, &[0, 1], 1, 7, 7, 17); // Error in Otten paper assert_cell(&cm, &[1, 2], 0, 4, 7, 7); assert_cell(&cm, &[2, 2], 0, 0, 3, 3); assert_cell(&cm, &[3, 2], 0, 0, 0, 1); assert_cell(&cm, &[0, 2], 0, 7, 7, 11); assert_cell(&cm, &[1, 0], 0, 7, 7, 11); assert_cell(&cm, &[2, 0], 0, 6, 6, 14); assert_cell(&cm, &[3, 0], 1, 1, 1, 3); assert_cell(&cm, &[0, 0], 1, 14, 14, 28); // Remaining Welsh man, Welsh woman doomed cm[&[3, 1]].cands -= 1; cm[&[3, 2]].cands -= 1; // Election of 2 English men, 2 English women // Exclusion of 1 Scottish woman cm[&[1, 1]].elected += 2; cm[&[1, 2]].elected += 2; cm[&[2, 2]].cands -= 1; cm.recount_cands(); while !cm.step().expect("No conformant result") {} println!("{}", cm); assert_cell(&cm, &[1, 1], 2, 2, 2, 4); assert_cell(&cm, &[2, 1], 0, 4, 4, 11); assert_cell(&cm, &[3, 1], 1, 1, 1, 1); assert_cell(&cm, &[0, 1], 3, 7, 7, 16); // Error in Otten paper assert_cell(&cm, &[1, 2], 2, 5, 5, 7); assert_cell(&cm, &[2, 2], 0, 2, 2, 2); assert_cell(&cm, &[3, 2], 0, 0, 0, 0); assert_cell(&cm, &[0, 2], 2, 7, 7, 9); assert_cell(&cm, &[1, 0], 4, 7, 7, 11); assert_cell(&cm, &[2, 0], 0, 6, 6, 13); assert_cell(&cm, &[3, 0], 1, 1, 1, 1); assert_cell(&cm, &[0, 0], 5, 14, 14, 25); } }