{\centering\bfseries Supplemental documentation for hpstat \textit{turnbull} command\par}
The hpstat \textit{turnbull} command implements Turnbull's nonparametric survival curve estimation for interval-censored observations [1]. This documentation discusses technical details of the implementation.
Let $\hat{F}(t)$ be a maximum likelihood estimator for the cumulative distribution function for failure times. Turnbull [1] demonstrated that $\hat{F}(t)$ decreases only on the set of what are now called ‘Turnbull intervals’, or ‘innermost intervals’, $(q_j, p_j]$ for $j =1, 2, …, m$.
Let $s_j$ be the probability of failure within the interval $(q_j, p_j]$. We seek a maximum likelihood estimator for the vector $\symbf{s}=(s_1, s_2, …, s_m)^\mathrm{T}$.
Take the $i$-th observation, $1 ≤ i ≤ n$ , whose failure time falls in $(L_i, R_i]$. Let $α_{i,j}=\mathrm{I}\left((q_j, p_j]\subseteq(L_i, R_i]\right)$.
As discussed by Turnbull [1], noting that we consider only the case of no truncation, we commence with an arbitrary initial guess for $\hat{\symbf{s}}$, and iteratively apply:
\hat{s}_j &\leftarrow π_j(\hat{\symbf{s}}), \qquad\text{for all $j =1, 2, …, m$}
\end{align*}
%
This yields the maximum likelihood estimator $\hat{\symbf{s}}$.
Now let $\hat{F}_0=0 ≤ \hat{F}_1 ≤ \hat{F}_2 ≤ … ≤ \hat{F}_m =1$ be the values of $\hat{F}(t)$ outside the Turnbull intervals, such that $\hat{s}_j =\hat{F}_j -\hat{F}_{j-1}$. We seek the standard errors of these $\hat{\symbf{F}}=(\hat{F}_1, \hat{F}_2, …, \hat{F}_{m-1})^\mathrm{T}$.
%
Note that the log-likelihood $\mathcal{L}_i$ for the $i$-th observation is:
The covariance matrix of $\hat{\symbf{F}}$ is given by the inverse of $-\nablasub{\hat{\symbf{F}}}\mathcal{L}$. The standard errors for each of $\hat{\symbf{F}}$ are the square roots of the diagonal elements of the covariance matrix, as required. Alternatively, when \textit{--se-method oim-drop-zeros} is passed, columns/rows of $\nablasub{\hat{\symbf{F}}}\mathcal{L}$ corresponding with intervals where $\hat{s}_i =0$ are dropped before the matrix is inverted, which enables greater numerical stability but whose theoretical justification is not well explored [2].
\item Turnbull BW. The empirical distribution function with arbitrarily grouped, censored and truncated data. \textit{Journal of the Royal Statistical Society, Series B (Methodological)}. 1976;38(3):290–5. \href{https://doi.org/10.1111/j.2517-6161.1976.tb01597.x}{doi: 10.1111\slash j.2517-6161.1976.tb01597.x}
\item Goodall RL, Dunn DT, Babiker AG. Interval-censored survival time data: confidence intervals for the non-parametric survivor function. \textit{Statistics in Medicine}. 2004;23(7):1131–45. \href{https://doi.org/10.1002/sim.1682}{doi: 10.1002\slash sim.1682}