turnbull: Disregard ICM step when computing likelihood-ratio confidence intervals
ICM step performance is heavily degraded when constraints are required It is much faster to rely on the EM step alone 1275% speedup!
This commit is contained in:
parent
c9a8b5b8a5
commit
307aff6f14
@ -312,6 +312,8 @@ fn fit_turnbull_estimator(data: &TurnbullData, progress_bar: ProgressBar, max_it
|
||||
// -------
|
||||
// EM step
|
||||
|
||||
// TODO: Do EM step multiple times per ICM step?
|
||||
|
||||
let p_after_em = do_em_step(data, &p, &s, &constraint);
|
||||
let s_after_em = p_to_s(&p_after_em);
|
||||
|
||||
@ -324,13 +326,18 @@ fn fit_turnbull_estimator(data: &TurnbullData, progress_bar: ProgressBar, max_it
|
||||
// --------
|
||||
// ICM step
|
||||
|
||||
let (p_new, s_new, ll_model_new) = do_icm_step(data, &p, &s, ll_tolerance, &constraint, ll_model_after_em);
|
||||
let ll_model_new;
|
||||
|
||||
if constraint.is_none() {
|
||||
(p, s, ll_model_new) = do_icm_step(data, &p, &s, ll_tolerance, ll_model_after_em);
|
||||
} else {
|
||||
// ICM step is very slow with constraints, so skip it and just do EM
|
||||
ll_model_new = ll_model_after_em;
|
||||
}
|
||||
|
||||
let ll_change = ll_model_new - ll_model;
|
||||
let converged = ll_change <= ll_tolerance;
|
||||
|
||||
p = p_new;
|
||||
s = s_new;
|
||||
ll_model = ll_model_new;
|
||||
|
||||
// Estimate progress bar according to either the order of magnitude of the ll_change relative to tolerance, or iteration/max_iterations
|
||||
@ -421,7 +428,7 @@ fn do_em_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>, constraint: &Opti
|
||||
return p_new;
|
||||
}
|
||||
|
||||
fn do_icm_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>, ll_tolerance: f64, constraint: &Option<Constraint>, ll_model: f64) -> (Vec<f64>, Vec<f64>, f64) {
|
||||
fn do_icm_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>, ll_tolerance: f64, /* constraint: &Option<Constraint>, */ ll_model: f64) -> (Vec<f64>, Vec<f64>, f64) {
|
||||
// Compute Λ, the cumulative hazard
|
||||
// Since Λ = -inf when survival is 1, and Λ = inf when survival is 0, these are omitted
|
||||
// The entry at lambda[j] corresponds to the survival immediately before time point j + 1
|
||||
@ -495,15 +502,16 @@ fn do_icm_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>, ll_tolerance: f6
|
||||
ll_model_new = likelihood_obs_new.iter().map(|l| l.ln()).sum();
|
||||
|
||||
// Constrain if required
|
||||
if let Some(c) = constraint {
|
||||
let cur_survival_prob = s_new[c.time_index];
|
||||
let _ = &mut p_new[0..c.time_index].iter_mut().for_each(|x| *x *= (1.0 - c.survival_prob) / (1.0 - cur_survival_prob)); // Desired failure probability over current failure probability
|
||||
let _ = &mut p_new[c.time_index..].iter_mut().for_each(|x| *x *= c.survival_prob / cur_survival_prob);
|
||||
|
||||
s_new = p_to_s(&p_new);
|
||||
let likelihood_obs_new = get_likelihood_obs(data, &s_new);
|
||||
ll_model_new = likelihood_obs_new.iter().map(|l| l.ln()).sum();
|
||||
}
|
||||
// This is very slow, so support constraints only in the EM step
|
||||
//if let Some(c) = constraint {
|
||||
// let cur_survival_prob = s_new[c.time_index];
|
||||
// let _ = &mut p_new[0..c.time_index].iter_mut().for_each(|x| *x *= (1.0 - c.survival_prob) / (1.0 - cur_survival_prob)); // Desired failure probability over current failure probability
|
||||
// let _ = &mut p_new[c.time_index..].iter_mut().for_each(|x| *x *= c.survival_prob / cur_survival_prob);
|
||||
//
|
||||
// s_new = p_to_s(&p_new);
|
||||
// let likelihood_obs_new = get_likelihood_obs(data, &s_new);
|
||||
// ll_model_new = likelihood_obs_new.iter().map(|l| l.ln()).sum();
|
||||
//}
|
||||
|
||||
if ll_model_new > ll_model {
|
||||
return (p_new, s_new, ll_model_new);
|
||||
|
Loading…
x
Reference in New Issue
Block a user