Add comments to M step
This commit is contained in:
parent
461eb8db5f
commit
45585a2b38
@ -421,8 +421,8 @@ fn do_m_step(data: &IntervalCensoredCoxData, exp_beta_z: &Matrix1xX<f64>, beta:
|
|||||||
|
|
||||||
// Split these steps into functions to make profiling easier
|
// Split these steps into functions to make profiling easier
|
||||||
let (mut s0, s1, s2) = m_step_compute_s_values(data, xi_exp_beta_z);
|
let (mut s0, s1, s2) = m_step_compute_s_values(data, xi_exp_beta_z);
|
||||||
let sigma = m_step_compute_sigma(data, &posterior_weight, &s0, &s1, &s2);
|
let jacobian = m_step_compute_jacobian(data, &posterior_weight, &s0, &s1, &s2);
|
||||||
let new_beta = m_step_compute_new_beta(data, &posterior_weight, &s0, &s1, sigma, beta);
|
let new_beta = m_step_compute_new_beta(data, &posterior_weight, &s0, &s1, jacobian, beta);
|
||||||
s0 = m_step_compute_s0(data, beta);
|
s0 = m_step_compute_s0(data, beta);
|
||||||
let new_lambda = m_step_compute_new_lambda(data, &posterior_weight, &s0);
|
let new_lambda = m_step_compute_new_lambda(data, &posterior_weight, &s0);
|
||||||
|
|
||||||
@ -433,6 +433,7 @@ fn m_step_compute_s_values(data: &IntervalCensoredCoxData, xi_exp_beta_z: &Matri
|
|||||||
// ComputeSValues
|
// ComputeSValues
|
||||||
|
|
||||||
// Compute s0
|
// Compute s0
|
||||||
|
// For each k, s0 is \sum_{i=1}^n I(t_k <= R*_j) E(ξ_j) exp(β^T Z_jk)
|
||||||
let mut s0: DVector<f64> = DVector::zeros(data.num_times()); // Elements are f64
|
let mut s0: DVector<f64> = DVector::zeros(data.num_times()); // Elements are f64
|
||||||
for i in 0..data.num_obs() {
|
for i in 0..data.num_obs() {
|
||||||
let s0_contrib = xi_exp_beta_z[i];
|
let s0_contrib = xi_exp_beta_z[i];
|
||||||
@ -447,6 +448,8 @@ fn m_step_compute_s_values(data: &IntervalCensoredCoxData, xi_exp_beta_z: &Matri
|
|||||||
s2_contrib[i] = xi_exp_beta_z[i] * &data.z_z_transpose[i]; // Observations are time-independent
|
s2_contrib[i] = xi_exp_beta_z[i] * &data.z_z_transpose[i]; // Observations are time-independent
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// For each k, s1 is \sum_{i=1}^n I(t_k <= R*_j) E(ξ_j) exp(β^T Z_jk) Z_jk
|
||||||
|
// s1 is also the gradient of s0
|
||||||
let s1 = (0..data.num_times()).into_par_iter().map(|k| {
|
let s1 = (0..data.num_times()).into_par_iter().map(|k| {
|
||||||
let mut s1_k = DVector::zeros(data.num_covs());
|
let mut s1_k = DVector::zeros(data.num_covs());
|
||||||
for i in 0..data.num_obs() {
|
for i in 0..data.num_obs() {
|
||||||
@ -457,6 +460,7 @@ fn m_step_compute_s_values(data: &IntervalCensoredCoxData, xi_exp_beta_z: &Matri
|
|||||||
s1_k
|
s1_k
|
||||||
}).collect();
|
}).collect();
|
||||||
|
|
||||||
|
// For each k, s2 is Jacobian of s1
|
||||||
let s2 = (0..data.num_times()).into_par_iter().map(|k| {
|
let s2 = (0..data.num_times()).into_par_iter().map(|k| {
|
||||||
let mut s2_k = DMatrix::zeros(data.num_covs(), data.num_covs());
|
let mut s2_k = DMatrix::zeros(data.num_covs(), data.num_covs());
|
||||||
for i in 0..data.num_obs() {
|
for i in 0..data.num_obs() {
|
||||||
@ -470,32 +474,37 @@ fn m_step_compute_s_values(data: &IntervalCensoredCoxData, xi_exp_beta_z: &Matri
|
|||||||
return (s0, s1, s2);
|
return (s0, s1, s2);
|
||||||
}
|
}
|
||||||
|
|
||||||
fn m_step_compute_sigma(data: &IntervalCensoredCoxData, posterior_weight: &DMatrix<f64>, s0: &DVector<f64>, s1: &Vec<DVector<f64>>, s2: &Vec<DMatrix<f64>>) -> DMatrix<f64> {
|
fn m_step_compute_jacobian(data: &IntervalCensoredCoxData, posterior_weight: &DMatrix<f64>, s0: &DVector<f64>, s1: &Vec<DVector<f64>>, s2: &Vec<DMatrix<f64>>) -> DMatrix<f64> {
|
||||||
// ComputeSigma
|
// ComputeSigma
|
||||||
let mut sigma: DMatrix<f64> = DMatrix::zeros(data.num_covs(), data.num_covs());
|
let mut jacobian: DMatrix<f64> = DMatrix::zeros(data.num_covs(), data.num_covs());
|
||||||
for k in 0..data.num_times() {
|
for k in 0..data.num_times() {
|
||||||
|
// factor_k derives from the quotient rule applied to the fraction in the LHS to be solved for 0
|
||||||
let factor_k = (s1[k].clone() / s0[k]) * (s1[k].transpose() / s0[k]) - (s2[k].clone() / s0[k]);
|
let factor_k = (s1[k].clone() / s0[k]) * (s1[k].transpose() / s0[k]) - (s2[k].clone() / s0[k]);
|
||||||
let sum_posterior_weight = data.r_star_indicator.column(k).component_mul(&posterior_weight.column(k)).sum();
|
let sum_posterior_weight = data.r_star_indicator.column(k).component_mul(&posterior_weight.column(k)).sum();
|
||||||
sigma += sum_posterior_weight * factor_k.clone();
|
jacobian += sum_posterior_weight * factor_k.clone();
|
||||||
}
|
}
|
||||||
return sigma;
|
return jacobian;
|
||||||
}
|
}
|
||||||
|
|
||||||
fn m_step_compute_new_beta(data: &IntervalCensoredCoxData, posterior_weight: &DMatrix<f64>, s0: &DVector<f64>, s1: &Vec<DVector<f64>>, sigma: DMatrix<f64>, beta: &DVector<f64>) -> DVector<f64> {
|
fn m_step_compute_new_beta(data: &IntervalCensoredCoxData, posterior_weight: &DMatrix<f64>, s0: &DVector<f64>, s1: &Vec<DVector<f64>>, jacobian: DMatrix<f64>, beta: &DVector<f64>) -> DVector<f64> {
|
||||||
// ComputeNewBeta
|
// ComputeNewBeta
|
||||||
assert!(sigma.clone().full_piv_lu().is_invertible(), "Sigma is not invertible");
|
assert!(jacobian.clone().full_piv_lu().is_invertible(), "Jacobian is not invertible");
|
||||||
|
|
||||||
let mut sum: DVector<f64> = DVector::zeros(data.num_covs());
|
let mut lhs_value: DVector<f64> = DVector::zeros(data.num_covs());
|
||||||
for k in 0..data.num_times() {
|
for k in 0..data.num_times() {
|
||||||
let quotient_k = s1[k].clone() / s0[k];
|
let quotient_k = s1[k].clone() / s0[k];
|
||||||
for i in 0..data.num_obs() {
|
for i in 0..data.num_obs() {
|
||||||
if data.r_star_indicator[(i, k)] == 1.0 {
|
if data.r_star_indicator[(i, k)] == 1.0 {
|
||||||
sum += posterior_weight[(i, k)] * (data.data_indep.column(i) - "ient_k);
|
lhs_value += posterior_weight[(i, k)] * (data.data_indep.column(i) - "ient_k);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
let new_beta = beta.clone() - sigma.try_inverse().unwrap() * sum;
|
// lhs_value = value of the LHS to be solved for 0 vector, \sum_{i=1}^n \sum_{j=1}^k I(t_k <= R*_j) etc...
|
||||||
|
// jacobian = Jacobian of LHS
|
||||||
|
// new_beta is therefore obtained by Newton's method
|
||||||
|
|
||||||
|
let new_beta = beta.clone() - jacobian.try_inverse().unwrap() * lhs_value;
|
||||||
return new_beta;
|
return new_beta;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user