turnbull: Pre-compute survival probabilities
This commit is contained in:
parent
250cfd8798
commit
81b0b3f9b5
@ -287,8 +287,11 @@ fn get_turnbull_intervals(data_times: &MatrixXx2<f64>) -> Vec<(f64, f64)> {
|
||||
}
|
||||
|
||||
fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, max_iterations: u32, ll_tolerance: f64, mut p: Vec<f64>) -> (Vec<f64>, f64) {
|
||||
// Pre-compute S, the survival probability at the start of each interval
|
||||
let mut s = p_to_s(&p);
|
||||
|
||||
// Get likelihood for each observation
|
||||
let mut likelihood_obs = get_likelihood_obs(data, &p);
|
||||
let mut likelihood_obs = get_likelihood_obs(data, &s);
|
||||
let mut ll_model: f64 = likelihood_obs.iter().map(|l| l.ln()).sum();
|
||||
|
||||
let mut iteration = 1;
|
||||
@ -296,55 +299,41 @@ fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, ma
|
||||
// -------
|
||||
// EM step
|
||||
|
||||
// Pre-compute S, the survival probability at the start of each interval
|
||||
let mut s = Vec::with_capacity(data.num_intervals() + 1);
|
||||
let mut survival = 1.0;
|
||||
s.push(1.0);
|
||||
for p_j in p.iter() {
|
||||
survival -= p_j;
|
||||
s.push(survival);
|
||||
}
|
||||
|
||||
// Update p
|
||||
let mut p_new = Vec::with_capacity(data.num_intervals());
|
||||
for j in 0..data.num_intervals() {
|
||||
let tmp: f64 = data.data_time_interval_indexes.iter()
|
||||
.filter(|(idx_left, idx_right)| j >= *idx_left && j <= *idx_right)
|
||||
//.map(|(idx_left, idx_right)| 1.0 / p[*idx_left..(*idx_right + 1)].iter().sum::<f64>())
|
||||
.map(|(idx_left, idx_right)| 1.0 / (s[*idx_left] - s[*idx_right + 1]))
|
||||
.sum();
|
||||
|
||||
p_new.push(p[j] * tmp / (data.num_obs() as f64));
|
||||
}
|
||||
|
||||
let likelihood_obs_after_em = get_likelihood_obs(data, &p_new);
|
||||
let mut s_new = p_to_s(&p_new);
|
||||
let likelihood_obs_after_em = get_likelihood_obs(data, &s_new);
|
||||
let ll_model_after_em: f64 = likelihood_obs_after_em.iter().map(|l| l.ln()).sum();
|
||||
|
||||
p = p_new;
|
||||
s = s_new;
|
||||
|
||||
// --------
|
||||
// ICM step
|
||||
|
||||
// Compute Λ
|
||||
// S = 1 means Λ = -inf and S = 0 means Λ = inf so skip these
|
||||
let mut lambda = Vec::with_capacity(data.num_intervals() - 1);
|
||||
let mut survival: f64 = 1.0;
|
||||
for j in 0..(data.num_intervals() - 1) {
|
||||
survival -= p[j];
|
||||
lambda.push((-survival.ln()).ln());
|
||||
}
|
||||
// Compute Λ, the cumulative hazard
|
||||
let lambda = s_to_lambda(&s);
|
||||
|
||||
// Compute gradient
|
||||
let mut gradient = DVector::zeros(data.num_intervals() - 1);
|
||||
for j in 0..(data.num_intervals() - 1) {
|
||||
let sum_right: f64 = data.data_time_interval_indexes.iter()
|
||||
.filter(|(idx_left, idx_right)| j + 1 == *idx_right + 1)
|
||||
.map(|(idx_left, idx_right)| (-lambda[j].exp() + lambda[j]).exp() / p[*idx_left..(*idx_right + 1)].iter().sum::<f64>())
|
||||
.map(|(idx_left, idx_right)| (-lambda[j].exp() + lambda[j]).exp() / (s[*idx_left] - s[*idx_right + 1]))
|
||||
.sum();
|
||||
|
||||
let sum_left: f64 = data.data_time_interval_indexes.iter()
|
||||
.filter(|(idx_left, idx_right)| j + 1 == *idx_left)
|
||||
.map(|(idx_left, idx_right)| (-lambda[j].exp() + lambda[j]).exp() / p[*idx_left..(*idx_right + 1)].iter().sum::<f64>())
|
||||
.map(|(idx_left, idx_right)| (-lambda[j].exp() + lambda[j]).exp() / (s[*idx_left] - s[*idx_right + 1]))
|
||||
.sum();
|
||||
|
||||
gradient[j] = sum_right - sum_left;
|
||||
@ -356,7 +345,7 @@ fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, ma
|
||||
let sum_left: f64 = data.data_time_interval_indexes.iter()
|
||||
.filter(|(idx_left, idx_right)| j + 1 == *idx_left)
|
||||
.map(|(idx_left, idx_right)| {
|
||||
let denom: f64 = p[*idx_left..(*idx_right + 1)].iter().sum();
|
||||
let denom = s[*idx_left] - s[*idx_right + 1];
|
||||
let a = ((lambda[j] - lambda[j].exp()).exp() * (1.0 - lambda[j].exp())) / denom;
|
||||
let b = (2.0 * lambda[j] - 2.0 * lambda[j].exp()).exp() / denom.powi(2);
|
||||
-a - b
|
||||
@ -366,7 +355,7 @@ fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, ma
|
||||
let sum_right: f64 = data.data_time_interval_indexes.iter()
|
||||
.filter(|(idx_left, idx_right)| j + 1 == *idx_right + 1)
|
||||
.map(|(idx_left, idx_right)| {
|
||||
let denom: f64 = p[*idx_left..(*idx_right + 1)].iter().sum();
|
||||
let denom = s[*idx_left] - s[*idx_right + 1];
|
||||
let a = ((lambda[j] - lambda[j].exp()).exp() * (1.0 - lambda[j].exp())) / denom;
|
||||
let b = (2.0 * lambda[j] - 2.0 * lambda[j].exp()).exp() / denom.powi(2);
|
||||
a - b
|
||||
@ -395,17 +384,21 @@ fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, ma
|
||||
let lambda_new = monotonic_regression_pava(lambda_target, weights.clone());
|
||||
|
||||
// Convert Λ to S to p
|
||||
s_new = Vec::with_capacity(data.num_intervals() + 1);
|
||||
p_new = Vec::with_capacity(data.num_intervals());
|
||||
|
||||
let mut survival = 1.0;
|
||||
s_new.push(1.0);
|
||||
for lambda_j in lambda_new.iter() {
|
||||
let next_survival = (-lambda_j.exp()).exp();
|
||||
s_new.push(next_survival);
|
||||
p_new.push(survival - next_survival);
|
||||
survival = next_survival;
|
||||
}
|
||||
s_new.push(0.0);
|
||||
p_new.push(survival);
|
||||
|
||||
let likelihood_obs_new = get_likelihood_obs(data, &p_new);
|
||||
let likelihood_obs_new = get_likelihood_obs(data, &s_new);
|
||||
ll_model_new = likelihood_obs_new.iter().map(|l| l.ln()).sum();
|
||||
|
||||
if ll_model_new > ll_model_after_em {
|
||||
@ -423,7 +416,7 @@ fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, ma
|
||||
let converged = ll_change <= ll_tolerance;
|
||||
|
||||
p = p_new;
|
||||
//likelihood_obs = likelihood_obs_new;
|
||||
s = s_new;
|
||||
ll_model = ll_model_new;
|
||||
|
||||
// Estimate progress bar according to either the order of magnitude of the ll_change relative to tolerance, or iteration/max_iterations
|
||||
@ -448,11 +441,31 @@ fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, ma
|
||||
return (p, ll_model);
|
||||
}
|
||||
|
||||
fn p_to_s(p: &Vec<f64>) -> Vec<f64> {
|
||||
let mut s = Vec::with_capacity(p.len() + 1); // Survival probabilities
|
||||
let mut survival = 1.0;
|
||||
s.push(1.0);
|
||||
for p_j in p.iter() {
|
||||
survival -= p_j;
|
||||
s.push(survival);
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
fn s_to_lambda(s: &Vec<f64>) -> Vec<f64> {
|
||||
// S = 1 means Λ = -inf and S = 0 means Λ = inf so skip these
|
||||
let mut lambda = Vec::with_capacity(s.len() - 2); // Cumulative hazard
|
||||
for s_j in &s[1..(s.len() - 1)] {
|
||||
lambda.push((-s_j.ln()).ln());
|
||||
}
|
||||
return lambda;
|
||||
}
|
||||
|
||||
fn get_likelihood_obs(data: &TurnbullData, s: &Vec<f64>) -> Vec<f64> {
|
||||
return data.data_time_interval_indexes
|
||||
.par_iter()
|
||||
.map(|(idx_left, idx_right)| s[*idx_left..(*idx_right + 1)].iter().sum())
|
||||
.collect();
|
||||
.map(|(idx_left, idx_right)| s[*idx_left] - s[*idx_right + 1])
|
||||
.collect(); // TODO: Return iterator directly
|
||||
}
|
||||
|
||||
fn compute_hessian(data: &TurnbullData, s: &Vec<f64>) -> DMatrix<f64> {
|
||||
|
Loading…
x
Reference in New Issue
Block a user