turnbull: Handle situation where EM algorithm yields exact solution
This commit is contained in:
parent
c87f42a042
commit
993e4ba3e2
@ -311,7 +311,7 @@ fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, ma
|
||||
// --------
|
||||
// ICM step
|
||||
|
||||
let (p_new, s_new, ll_model_new) = do_icm_step(data, &p, &s, ll_model_after_em);
|
||||
let (p_new, s_new, ll_model_new) = do_icm_step(data, &p, &s, ll_tolerance, ll_model_after_em);
|
||||
|
||||
let ll_change = ll_model_new - ll_model;
|
||||
let converged = ll_change <= ll_tolerance;
|
||||
@ -400,7 +400,7 @@ fn do_em_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>) -> Vec<f64> {
|
||||
return p_new;
|
||||
}
|
||||
|
||||
fn do_icm_step(data: &TurnbullData, _p: &Vec<f64>, s: &Vec<f64>, ll_model: f64) -> (Vec<f64>, Vec<f64>, f64) {
|
||||
fn do_icm_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>, ll_tolerance: f64, ll_model: f64) -> (Vec<f64>, Vec<f64>, f64) {
|
||||
// Compute Λ, the cumulative hazard
|
||||
// Since Λ = -inf when survival is 1, and Λ = inf when survival is 0, these are omitted
|
||||
// The entry at lambda[j] corresponds to the survival immediately before time point j + 1
|
||||
@ -477,6 +477,12 @@ fn do_icm_step(data: &TurnbullData, _p: &Vec<f64>, s: &Vec<f64>, ll_model: f64)
|
||||
return (p_new, s_new, ll_model_new);
|
||||
}
|
||||
|
||||
if ll_model - ll_model_new < ll_tolerance {
|
||||
// LL decreased but by less than ll_tolerance
|
||||
// This might happen because the EM algorithm already obtained the exact solution
|
||||
return (p.clone(), s.clone(), ll_model);
|
||||
}
|
||||
|
||||
step_size_exponent += 1;
|
||||
|
||||
if step_size_exponent > 10 {
|
||||
|
Loading…
x
Reference in New Issue
Block a user