turnbull: Allow dropping columns/rows of Hessian corresponding to intervals with zero failure probability
This commit is contained in:
parent
072d453d11
commit
dd24de5813
@ -1,7 +1,7 @@
|
||||
\documentclass[a4paper,12pt]{article}
|
||||
|
||||
\usepackage[math-style=ISO, bold-style=ISO]{unicode-math}
|
||||
\setmainfont{TeX Gyre Termes}
|
||||
\setmainfont[RawFeature=-tlig]{TeX Gyre Termes}
|
||||
\setmathfont{TeX Gyre Termes Math}
|
||||
|
||||
\usepackage{parskip}
|
||||
@ -61,12 +61,14 @@
|
||||
%
|
||||
The sum of all $\nablasub{\hat{\symbf{F}}} \mathcal{L}_i$ yields the Hessian of the log-likelihood $\nablasub{\hat{\symbf{F}}} \mathcal{L}$.
|
||||
|
||||
The covariance matrix of $\hat{\symbf{F}}$ is given by the inverse of $-\nablasub{\hat{\symbf{F}}} \mathcal{L}$. The standard errors for each of $\hat{\symbf{F}}$ are the square roots of the diagonal elements of the covariance matrix, as required.
|
||||
The covariance matrix of $\hat{\symbf{F}}$ is given by the inverse of $-\nablasub{\hat{\symbf{F}}} \mathcal{L}$. The standard errors for each of $\hat{\symbf{F}}$ are the square roots of the diagonal elements of the covariance matrix, as required. Alternatively, when \textit{--se-method oim-drop-zeros} is passed, columns/rows of $\nablasub{\hat{\symbf{F}}} \mathcal{L}$ corresponding with intervals where $\hat{s}_i = 0$ are dropped before the matrix is inverted, which enables greater numerical stability but whose theoretical justification is not well explored [2].
|
||||
|
||||
{\vspace{0.5cm}\scshape\centering References\par}
|
||||
%{\vspace{0.5cm}\scshape\centering References\par}
|
||||
{\pagebreak\scshape\centering References\par}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Turnbull BW. The empirical distribution function with arbitrarily grouped, censored and truncated data. \textit{Journal of the Royal Statistical Society, Series B (Methodological)}. 1976;38(3):290–5. \href{https://doi.org/10.1111/j.2517-6161.1976.tb01597.x}{doi: 10.1111\slash j.2517-6161.1976.tb01597.x}
|
||||
\item Goodall RL, Dunn DT, Babiker AG. Interval-censored survival time data: confidence intervals for the non-parametric survivor function. \textit{Statistics in Medicine}. 2004;23(7):1131–45. \href{https://doi.org/10.1002/sim.1682}{doi: 10.1002\slash sim.1682}
|
||||
\end{enumerate}
|
||||
|
||||
\end{document}
|
||||
|
@ -45,6 +45,14 @@ pub struct TurnbullArgs {
|
||||
/// Terminate algorithm when the absolute change in failure probability in each interval is less than this tolerance
|
||||
#[arg(long, default_value="0.0001")]
|
||||
fail_prob_tolerance: f64,
|
||||
|
||||
/// Method for computing standard error or survival probabilities
|
||||
#[arg(long, value_enum, default_value="oim")]
|
||||
se_method: SEMethod,
|
||||
|
||||
/// Threshold for dropping failure probability in --se-method oim-drop-zeros
|
||||
#[arg(long, default_value="0.0001")]
|
||||
zero_tolerance: f64,
|
||||
}
|
||||
|
||||
#[derive(ValueEnum, Clone)]
|
||||
@ -53,13 +61,19 @@ enum OutputFormat {
|
||||
Json
|
||||
}
|
||||
|
||||
#[derive(ValueEnum, Clone)]
|
||||
pub enum SEMethod {
|
||||
OIM,
|
||||
OIMDropZeros,
|
||||
}
|
||||
|
||||
pub fn main(args: TurnbullArgs) {
|
||||
// Read data
|
||||
let data_times = read_data(&args.input);
|
||||
|
||||
// Fit regression
|
||||
let progress_bar = ProgressBar::with_draw_target(Some(0), ProgressDrawTarget::term_like(Box::new(UnconditionalTermLike::stderr())));
|
||||
let result = fit_turnbull(data_times, progress_bar, args.max_iterations, args.fail_prob_tolerance);
|
||||
let result = fit_turnbull(data_times, progress_bar, args.max_iterations, args.fail_prob_tolerance, args.se_method, args.zero_tolerance);
|
||||
|
||||
// Display output
|
||||
match args.output {
|
||||
@ -153,7 +167,7 @@ impl TurnbullData {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn fit_turnbull(data_times: MatrixXx2<f64>, progress_bar: ProgressBar, max_iterations: u32, fail_prob_tolerance: f64) -> TurnbullResult {
|
||||
pub fn fit_turnbull(data_times: MatrixXx2<f64>, progress_bar: ProgressBar, max_iterations: u32, fail_prob_tolerance: f64, se_method: SEMethod, zero_tolerance: f64) -> TurnbullResult {
|
||||
// ----------------------
|
||||
// Prepare for regression
|
||||
|
||||
@ -287,8 +301,42 @@ pub fn fit_turnbull(data_times: MatrixXx2<f64>, progress_bar: ProgressBar, max_i
|
||||
}
|
||||
progress_bar.finish();
|
||||
|
||||
let vcov = (-hessian).try_inverse().expect("Matrix not invertible");
|
||||
let survival_prob_se = vcov.diagonal().apply_into(|x| { *x = x.sqrt(); });
|
||||
let mut survival_prob_se: DVector<f64>;
|
||||
|
||||
match se_method {
|
||||
SEMethod::OIM => {
|
||||
// Compute covariance matrix as inverse of negative Hessian
|
||||
let vcov = -hessian.try_inverse().expect("Matrix not invertible");
|
||||
survival_prob_se = vcov.diagonal().apply_into(|x| { *x = x.sqrt(); });
|
||||
}
|
||||
SEMethod::OIMDropZeros => {
|
||||
// Drop rows/columns of Hessian corresponding to intervals with zero failure probability
|
||||
let nonzero_intervals: Vec<usize> = (0..(data.num_intervals() - 1)).filter(|i| s[*i] > zero_tolerance).collect();
|
||||
|
||||
let mut hessian_nonzero: DMatrix<f64> = DMatrix::zeros(nonzero_intervals.len(), nonzero_intervals.len());
|
||||
for (nonzero_index1, orig_index1) in nonzero_intervals.iter().enumerate() {
|
||||
hessian_nonzero[(nonzero_index1, nonzero_index1)] = hessian[(*orig_index1, *orig_index1)];
|
||||
for (nonzero_index2, orig_index2) in nonzero_intervals.iter().enumerate().take(nonzero_index1) {
|
||||
hessian_nonzero[(nonzero_index1, nonzero_index2)] = hessian[(*orig_index1, *orig_index2)];
|
||||
hessian_nonzero[(nonzero_index2, nonzero_index1)] = hessian[(*orig_index2, *orig_index1)];
|
||||
}
|
||||
}
|
||||
|
||||
let vcov = -hessian_nonzero.try_inverse().expect("Matrix not invertible");
|
||||
let survival_prob_se_nonzero = vcov.diagonal().apply_into(|x| { *x = x.sqrt(); });
|
||||
|
||||
survival_prob_se = DVector::zeros(data.num_intervals() - 1);
|
||||
let mut nonzero_index = 0;
|
||||
for orig_index in 0..(data.num_intervals() - 1) {
|
||||
if nonzero_intervals.contains(&orig_index) {
|
||||
survival_prob_se[orig_index] = survival_prob_se_nonzero[nonzero_index];
|
||||
nonzero_index += 1;
|
||||
} else {
|
||||
survival_prob_se[orig_index] = survival_prob_se[orig_index - 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return TurnbullResult {
|
||||
failure_intervals: data.intervals,
|
||||
|
@ -26,7 +26,7 @@ fn test_turnbull_minitab() {
|
||||
|
||||
// Fit regression
|
||||
let progress_bar = ProgressBar::hidden();
|
||||
let result = turnbull::fit_turnbull(data_times, progress_bar, 500, 0.0001);
|
||||
let result = turnbull::fit_turnbull(data_times, progress_bar, 500, 0.0001, turnbull::SEMethod::OIM, 0.0001);
|
||||
|
||||
assert_eq!(result.failure_intervals[0], (20000.0, 30000.0));
|
||||
assert_eq!(result.failure_intervals[1], (30000.0, 40000.0));
|
||||
|
Loading…
x
Reference in New Issue
Block a user