This repository has been archived on 2021-05-25. You can view files and clone it, but cannot push or open issues or pull requests.
pyRCV2/pyRCV2/numbers/rational_js.py
RunasSudo 891f82e148
Fix bug in JS implementation of exclusive Gregory
Remove dependency on Transcrypt's itertools.groupby as this does not appear to work
2021-01-03 02:05:49 +11:00

90 lines
2.9 KiB
Python

# pyRCV2: Preferential vote counting
# Copyright © 2020 Lee Yingtong Li (RunasSudo)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
class Rational:
"""
Wrapper for BigRational.js (rational arithmetic)
"""
ROUND_DOWN = 0
ROUND_HALF_UP = 1
ROUND_HALF_EVEN = 2
ROUND_UP = 3
def __init__(self, val):
if isinstance(val, Rational):
self.impl = val.impl
else:
self.impl = bigRat(val)
def pp(self, dp):
"""
Pretty print to specified number of decimal places
This will fail for numbers which cannot be represented as a JavaScript number
"""
return self.impl.valueOf().toFixed(dp)
def to_rational(self):
return self
def to_num(self):
"""
Convert to an instance of Num
"""
from pyRCV2.numbers import Num
__pragma__('opov')
return Num(self.impl.numerator.toString()) / Num(self.impl.denominator.toString())
__pragma__('noopov')
def __add__(self, other):
return Rational(self.impl.add(other.impl))
def __sub__(self, other):
return Rational(self.impl.subtract(other.impl))
def __mul__(self, other):
return Rational(self.impl.multiply(other.impl))
def __div__(self, other):
return Rational(self.impl.divide(other.impl))
def __eq__(self, other):
return self.impl.equals(other.impl)
def __ne__(self, other):
return not self.impl.equals(other.impl)
def __gt__(self, other):
return self.impl.greater(other.impl)
def __ge__(self, other):
return self.impl.greaterOrEquals(other.impl)
def __lt__(self, other):
return self.impl.lesser(other.impl)
def __le__(self, other):
return self.impl.lesserOrEquals(other.impl)
def __floor__(self):
return Rational(self.impl.floor())
def round(self, dps, mode):
"""Round to the specified number of decimal places, using the ROUND_* mode specified"""
factor = bigRat(10).pow(dps)
if mode == Rational.ROUND_DOWN:
return Rational(self.impl.multiply(factor).floor().divide(factor))
elif mode == Rational.ROUND_HALF_UP:
return Rational(self.impl.multiply(factor).round().divide(factor))
elif mode == Rational.ROUND_HALF_EVEN:
raise Exception('ROUND_HALF_EVEN is not implemented in JS Native context')
elif mode == Rational.ROUND_UP:
return Rational(self.impl.multiply(factor).ceil().divide(factor))
else:
raise Exception('Invalid rounding mode')