140 lines
4.1 KiB
Python
140 lines
4.1 KiB
Python
|
# scipy-yli: Helpful SciPy utilities and recipes
|
||
|
# Copyright © 2022 Lee Yingtong Li (RunasSudo)
|
||
|
#
|
||
|
# This program is free software: you can redistribute it and/or modify
|
||
|
# it under the terms of the GNU Affero General Public License as published by
|
||
|
# the Free Software Foundation, either version 3 of the License, or
|
||
|
# (at your option) any later version.
|
||
|
#
|
||
|
# This program is distributed in the hope that it will be useful,
|
||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
# GNU Affero General Public License for more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU Affero General Public License
|
||
|
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||
|
|
||
|
import pandas as pd
|
||
|
from scipy import stats
|
||
|
import statsmodels.api as sm
|
||
|
|
||
|
import functools
|
||
|
import warnings
|
||
|
|
||
|
def check_nan(df, nan_policy):
|
||
|
"""Check df against nan_policy and return cleaned input"""
|
||
|
|
||
|
if nan_policy == 'raise':
|
||
|
if pd.isna(df).any(axis=None):
|
||
|
raise ValueError('NaN in input, pass nan_policy="warn" or "omit" to ignore')
|
||
|
elif nan_policy == 'warn':
|
||
|
df_cleaned = df.dropna()
|
||
|
if len(df_cleaned) < len(df):
|
||
|
warnings.warn('Omitting {} rows with NaN'.format(len(df) - len(df_cleaned)))
|
||
|
return df_cleaned
|
||
|
elif nan_policy == 'omit':
|
||
|
return df.dropna()
|
||
|
else:
|
||
|
raise Exception('Invalid nan_policy, expected "raise", "warn" or "omit"')
|
||
|
|
||
|
def do_fmt_p(p):
|
||
|
"""Return sign and formatted p value"""
|
||
|
|
||
|
if p < 0.001:
|
||
|
return '<', '0.001*'
|
||
|
elif p < 0.0095:
|
||
|
return None, '{:.3f}*'.format(p)
|
||
|
elif p < 0.045:
|
||
|
return None, '{:.2f}*'.format(p)
|
||
|
elif p < 0.05:
|
||
|
return None, '{:.3f}*'.format(p) # 3dps to show significance
|
||
|
elif p < 0.055:
|
||
|
return None, '{:.3f}'.format(p) # 3dps to show non-significance
|
||
|
elif p < 0.095:
|
||
|
return None, '{:.2f}'.format(p)
|
||
|
else:
|
||
|
return None, '{:.1f}'.format(p)
|
||
|
|
||
|
def fmt_p_text(p, nospace=False):
|
||
|
"""Format p value for plaintext"""
|
||
|
|
||
|
sign, fmt = do_fmt_p(p)
|
||
|
if sign is not None:
|
||
|
if nospace:
|
||
|
return sign + fmt # e.g. "<0.001"
|
||
|
else:
|
||
|
return sign + ' ' + fmt # e.g. "< 0.001"
|
||
|
else:
|
||
|
if nospace:
|
||
|
return fmt # e.g. "0.05"
|
||
|
else:
|
||
|
return '= ' + fmt # e.g. "= 0.05"
|
||
|
|
||
|
def fmt_p_html(p, nospace=False):
|
||
|
"""Format p value for HTML"""
|
||
|
|
||
|
txt = fmt_p_text(p, nospace)
|
||
|
return txt.replace('<', '<')
|
||
|
|
||
|
class Estimate:
|
||
|
"""A point estimate and surrounding confidence interval"""
|
||
|
|
||
|
def __init__(self, point, ci_lower, ci_upper):
|
||
|
self.point = point
|
||
|
self.ci_lower = ci_lower
|
||
|
self.ci_upper = ci_upper
|
||
|
|
||
|
def _repr_html_(self):
|
||
|
return self.summary()
|
||
|
|
||
|
def summary(self):
|
||
|
return '{:.2f} ({:.2f}–{:.2f})'.format(self.point, self.ci_lower, self.ci_upper)
|
||
|
|
||
|
class TTestResult:
|
||
|
"""
|
||
|
Result of a Student's t test
|
||
|
|
||
|
delta: Mean difference
|
||
|
"""
|
||
|
|
||
|
def __init__(self, statistic, dof, pvalue, delta):
|
||
|
self.statistic = statistic
|
||
|
self.dof = dof
|
||
|
self.pvalue = pvalue
|
||
|
self.delta = delta
|
||
|
|
||
|
def _repr_html_(self):
|
||
|
return '<i>t</i>({:.0f}) = {:.2f}; <i>p</i> {}<br><i>δ</i> (95% CI) = {}'.format(self.dof, self.statistic, fmt_p_html(self.pvalue), self.delta.summary())
|
||
|
|
||
|
def summary(self):
|
||
|
return 't({:.0f}) = {:.2f}; p {}\nδ (95% CI) = {}'.format(self.dof, self.statistic, fmt_p_text(self.pvalue), self.delta.summary())
|
||
|
|
||
|
def ttest_ind(df, dep, ind, *, nan_policy='warn'):
|
||
|
"""Perform an independent-sample Student's t test"""
|
||
|
|
||
|
df = check_nan(df[[ind, dep]], nan_policy)
|
||
|
|
||
|
# Get groupings for ind
|
||
|
groups = list(df.groupby(ind).groups.values())
|
||
|
|
||
|
# Ensure only 2 groups to compare
|
||
|
if len(groups) != 2:
|
||
|
raise Exception('Got {} values for {}, expected 2'.format(len(groups), ind))
|
||
|
|
||
|
# Get 2 groups
|
||
|
group1 = df.loc[groups[0], dep]
|
||
|
group2 = df.loc[groups[1], dep]
|
||
|
|
||
|
# Do t test
|
||
|
# Use statsmodels rather than SciPy because this provides the mean difference automatically
|
||
|
d1 = sm.stats.DescrStatsW(group1)
|
||
|
d2 = sm.stats.DescrStatsW(group2)
|
||
|
|
||
|
cm = sm.stats.CompareMeans(d2, d1) # This order to get correct CI
|
||
|
statistic, pvalue, dof = cm.ttest_ind()
|
||
|
|
||
|
delta = d2.mean - d1.mean
|
||
|
ci0, ci1 = cm.tconfint_diff()
|
||
|
|
||
|
return TTestResult(statistic=statistic, dof=dof, pvalue=pvalue, delta=Estimate(delta, ci0, ci1))
|
||
|
0
|