Implement chi2
This commit is contained in:
parent
edc82c1658
commit
7e8418eb36
69
tests/test_chi2.py
Normal file
69
tests/test_chi2.py
Normal file
@ -0,0 +1,69 @@
|
||||
# scipy-yli: Helpful SciPy utilities and recipes
|
||||
# Copyright © 2022 Lee Yingtong Li (RunasSudo)
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
from pytest import approx
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
import yli
|
||||
|
||||
def test_chi2_ol10_15():
|
||||
"""Compare yli.chi2 for Ott & Longnecker (2016) example 10.15"""
|
||||
|
||||
data = [
|
||||
(1, 'Moderate', 15),
|
||||
(2, 'Moderate', 32),
|
||||
(3, 'Moderate', 18),
|
||||
(4, 'Moderate', 5),
|
||||
(1, 'Mildly Severe', 8),
|
||||
(2, 'Mildly Severe', 29),
|
||||
(3, 'Mildly Severe', 23),
|
||||
(4, 'Mildly Severe', 18),
|
||||
(1, 'Severe', 1),
|
||||
(2, 'Severe', 20),
|
||||
(3, 'Severe', 25),
|
||||
(4, 'Severe', 22)
|
||||
]
|
||||
|
||||
df = pd.DataFrame({
|
||||
'AgeCategory': np.repeat([d[0] for d in data], [d[2] for d in data]),
|
||||
'Severity': np.repeat([d[1] for d in data], [d[2] for d in data])
|
||||
})
|
||||
|
||||
result = yli.chi2(df, 'Severity', 'AgeCategory')
|
||||
assert result.statistic == approx(27.13, abs=0.01)
|
||||
assert result.pvalue == approx(0.00014, abs=0.00001)
|
||||
|
||||
def test_chi2_ol10_18():
|
||||
"""Compare yli.chi2 for Ott & Longnecker (2016) example 10.18"""
|
||||
|
||||
data = [
|
||||
(False, False, 250),
|
||||
(True, False, 750),
|
||||
(False, True, 400),
|
||||
(True, True, 1600)
|
||||
]
|
||||
|
||||
df = pd.DataFrame({
|
||||
'Response': np.repeat([d[0] for d in data], [d[2] for d in data]),
|
||||
'Stress': np.repeat([d[1] for d in data], [d[2] for d in data])
|
||||
})
|
||||
|
||||
result = yli.chi2(df, 'Stress', 'Response')
|
||||
assert result.oddsratio.point == approx(1.333, abs=0.001)
|
||||
assert result.oddsratio.ci_lower == approx(1.113, abs=0.001)
|
||||
assert result.oddsratio.ci_upper == approx(1.596, abs=0.001)
|
@ -15,7 +15,7 @@
|
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
from .distributions import beta_oddsratio, beta_ratio, hdi, transformed_dist
|
||||
from .sig_tests import mannwhitney, ttest_ind
|
||||
from .sig_tests import chi2, mannwhitney, ttest_ind
|
||||
|
||||
def reload_me():
|
||||
import importlib
|
||||
|
@ -14,6 +14,7 @@
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy import stats
|
||||
import statsmodels.api as sm
|
||||
@ -155,3 +156,73 @@ def mannwhitney(df, dep, ind, *, nan_policy='warn', brunnermunzel=True, use_cont
|
||||
statistic=min(u1, u2), pvalue=result.pvalue,
|
||||
#med1=data1.median(), med2=data2.median(),
|
||||
rank_biserial=r, direction=('{1} > {0}' if u1 < u2 else '{0} > {1}').format(group1, group2))
|
||||
|
||||
# ------------------------
|
||||
# Pearson chi-squared test
|
||||
|
||||
class PearsonChiSquaredResult:
|
||||
"""Result of a Pearson chi-squared test"""
|
||||
|
||||
def __init__(self, ct, statistic, dof, pvalue, oddsratio=None, riskratio=None):
|
||||
self.ct = ct
|
||||
self.statistic = statistic
|
||||
self.dof = dof
|
||||
self.pvalue = pvalue
|
||||
self.oddsratio = oddsratio
|
||||
self.riskratio = riskratio
|
||||
|
||||
def _repr_html_(self):
|
||||
if self.oddsratio is not None:
|
||||
return '{}<br><i>χ</i><sup>2</sup>({}) = {:.2f}; <i>p</i> {}<br>OR (95% CI) = {}<br>RR (95% CI) = {}'.format(
|
||||
self.ct._repr_html_(), self.dof, self.statistic, fmt_p_html(self.pvalue), self.oddsratio.summary(), self.riskratio.summary())
|
||||
else:
|
||||
return '{}<br><i>χ</i><sup>2</sup>({}) = {:.2f}; <i>p</i> {}'.format(
|
||||
self.ct._repr_html_(), self.dof, self.statistic, fmt_p_html(self.pvalue))
|
||||
|
||||
def summary(self):
|
||||
if self.oddsratio is not None:
|
||||
return '{}\nχ²({}) = {:.2f}; p {}\nOR (95% CI) = {}\nRR (95% CI) = {}'.format(
|
||||
self.ct, self.dof, self.statistic, fmt_p_text(self.pvalue), self.oddsratio.summary(), self.riskratio.summary())
|
||||
else:
|
||||
return '{}\nχ²({}) = {:.2f}; p {}'.format(
|
||||
self.ct, self.dof, self.statistic, fmt_p_text(self.pvalue))
|
||||
|
||||
def chi2(df, dep, ind, *, nan_policy='warn'):
|
||||
"""
|
||||
Perform a Pearson chi-squared test
|
||||
"""
|
||||
|
||||
# Check for/clean NaNs
|
||||
df = check_nan(df[[ind, dep]], nan_policy)
|
||||
|
||||
# Compute contingency table
|
||||
ct = pd.crosstab(df[ind], df[dep])
|
||||
|
||||
# Get expected counts
|
||||
expected = stats.contingency.expected_freq(ct)
|
||||
|
||||
# Warn on low expected counts
|
||||
if (expected < 5).sum() / expected.size > 0.2:
|
||||
warnings.warn('{} of {} cells ({:.0f}%) have expected count < 5'.format((expected < 5).sum(), expected.size, (expected < 5).sum() / expected.size * 100))
|
||||
if (expected < 1).any():
|
||||
warnings.warn('{} cells have expected count < 1'.format((expected < 1).sum()))
|
||||
|
||||
if ct.shape == (2,2):
|
||||
# 2x2 table
|
||||
# Use statsmodels to get OR andRR
|
||||
|
||||
smct = sm.stats.Table2x2(np.flip(ct.to_numpy()), shift_zeros=False)
|
||||
result = smct.test_nominal_association()
|
||||
ORci = smct.oddsratio_confint()
|
||||
RRci = smct.riskratio_confint()
|
||||
|
||||
return PearsonChiSquaredResult(
|
||||
ct=ct, statistic=result.statistic, dof=result.df, pvalue=result.pvalue,
|
||||
oddsratio=Estimate(smct.oddsratio, ORci[0], ORci[1]), riskratio=Estimate(smct.riskratio, RRci[0], RRci[1]))
|
||||
else:
|
||||
# rxc table
|
||||
# Just use SciPy
|
||||
|
||||
result = stats.chi2_contingency(ct, correction=False)
|
||||
|
||||
return PearsonChiSquaredResult(ct=ct, statistic=result[0], dof=result[2], pvalue=result[1])
|
||||
|
Loading…
Reference in New Issue
Block a user