Implement ttest_ind
This commit is contained in:
parent
582cfa5893
commit
97a01b4e80
@ -14,7 +14,8 @@
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
from .distributions import *
|
||||
from .distributions import beta_oddsratio, beta_ratio, hdi, transformed_dist
|
||||
from .sig_tests import ttest_ind
|
||||
|
||||
def reload_me():
|
||||
import importlib
|
||||
|
140
yli/sig_tests.py
Normal file
140
yli/sig_tests.py
Normal file
@ -0,0 +1,140 @@
|
||||
# scipy-yli: Helpful SciPy utilities and recipes
|
||||
# Copyright © 2022 Lee Yingtong Li (RunasSudo)
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
import pandas as pd
|
||||
from scipy import stats
|
||||
import statsmodels.api as sm
|
||||
|
||||
import functools
|
||||
import warnings
|
||||
|
||||
def check_nan(df, nan_policy):
|
||||
"""Check df against nan_policy and return cleaned input"""
|
||||
|
||||
if nan_policy == 'raise':
|
||||
if pd.isna(df).any(axis=None):
|
||||
raise ValueError('NaN in input, pass nan_policy="warn" or "omit" to ignore')
|
||||
elif nan_policy == 'warn':
|
||||
df_cleaned = df.dropna()
|
||||
if len(df_cleaned) < len(df):
|
||||
warnings.warn('Omitting {} rows with NaN'.format(len(df) - len(df_cleaned)))
|
||||
return df_cleaned
|
||||
elif nan_policy == 'omit':
|
||||
return df.dropna()
|
||||
else:
|
||||
raise Exception('Invalid nan_policy, expected "raise", "warn" or "omit"')
|
||||
|
||||
def do_fmt_p(p):
|
||||
"""Return sign and formatted p value"""
|
||||
|
||||
if p < 0.001:
|
||||
return '<', '0.001*'
|
||||
elif p < 0.0095:
|
||||
return None, '{:.3f}*'.format(p)
|
||||
elif p < 0.045:
|
||||
return None, '{:.2f}*'.format(p)
|
||||
elif p < 0.05:
|
||||
return None, '{:.3f}*'.format(p) # 3dps to show significance
|
||||
elif p < 0.055:
|
||||
return None, '{:.3f}'.format(p) # 3dps to show non-significance
|
||||
elif p < 0.095:
|
||||
return None, '{:.2f}'.format(p)
|
||||
else:
|
||||
return None, '{:.1f}'.format(p)
|
||||
|
||||
def fmt_p_text(p, nospace=False):
|
||||
"""Format p value for plaintext"""
|
||||
|
||||
sign, fmt = do_fmt_p(p)
|
||||
if sign is not None:
|
||||
if nospace:
|
||||
return sign + fmt # e.g. "<0.001"
|
||||
else:
|
||||
return sign + ' ' + fmt # e.g. "< 0.001"
|
||||
else:
|
||||
if nospace:
|
||||
return fmt # e.g. "0.05"
|
||||
else:
|
||||
return '= ' + fmt # e.g. "= 0.05"
|
||||
|
||||
def fmt_p_html(p, nospace=False):
|
||||
"""Format p value for HTML"""
|
||||
|
||||
txt = fmt_p_text(p, nospace)
|
||||
return txt.replace('<', '<')
|
||||
|
||||
class Estimate:
|
||||
"""A point estimate and surrounding confidence interval"""
|
||||
|
||||
def __init__(self, point, ci_lower, ci_upper):
|
||||
self.point = point
|
||||
self.ci_lower = ci_lower
|
||||
self.ci_upper = ci_upper
|
||||
|
||||
def _repr_html_(self):
|
||||
return self.summary()
|
||||
|
||||
def summary(self):
|
||||
return '{:.2f} ({:.2f}–{:.2f})'.format(self.point, self.ci_lower, self.ci_upper)
|
||||
|
||||
class TTestResult:
|
||||
"""
|
||||
Result of a Student's t test
|
||||
|
||||
delta: Mean difference
|
||||
"""
|
||||
|
||||
def __init__(self, statistic, dof, pvalue, delta):
|
||||
self.statistic = statistic
|
||||
self.dof = dof
|
||||
self.pvalue = pvalue
|
||||
self.delta = delta
|
||||
|
||||
def _repr_html_(self):
|
||||
return '<i>t</i>({:.0f}) = {:.2f}; <i>p</i> {}<br><i>δ</i> (95% CI) = {}'.format(self.dof, self.statistic, fmt_p_html(self.pvalue), self.delta.summary())
|
||||
|
||||
def summary(self):
|
||||
return 't({:.0f}) = {:.2f}; p {}\nδ (95% CI) = {}'.format(self.dof, self.statistic, fmt_p_text(self.pvalue), self.delta.summary())
|
||||
|
||||
def ttest_ind(df, dep, ind, *, nan_policy='warn'):
|
||||
"""Perform an independent-sample Student's t test"""
|
||||
|
||||
df = check_nan(df[[ind, dep]], nan_policy)
|
||||
|
||||
# Get groupings for ind
|
||||
groups = list(df.groupby(ind).groups.values())
|
||||
|
||||
# Ensure only 2 groups to compare
|
||||
if len(groups) != 2:
|
||||
raise Exception('Got {} values for {}, expected 2'.format(len(groups), ind))
|
||||
|
||||
# Get 2 groups
|
||||
group1 = df.loc[groups[0], dep]
|
||||
group2 = df.loc[groups[1], dep]
|
||||
|
||||
# Do t test
|
||||
# Use statsmodels rather than SciPy because this provides the mean difference automatically
|
||||
d1 = sm.stats.DescrStatsW(group1)
|
||||
d2 = sm.stats.DescrStatsW(group2)
|
||||
|
||||
cm = sm.stats.CompareMeans(d2, d1) # This order to get correct CI
|
||||
statistic, pvalue, dof = cm.ttest_ind()
|
||||
|
||||
delta = d2.mean - d1.mean
|
||||
ci0, ci1 = cm.tconfint_diff()
|
||||
|
||||
return TTestResult(statistic=statistic, dof=dof, pvalue=pvalue, delta=Estimate(delta, ci0, ci1))
|
||||
0
|
Loading…
Reference in New Issue
Block a user