Style fixups
This commit is contained in:
parent
255ad100fd
commit
a753761675
@ -14,7 +14,7 @@
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
from .bayes_factors import BayesFactor, bayesfactor_afbf
|
||||
from .bayes_factors import bayesfactor_afbf
|
||||
from .distributions import beta_oddsratio, beta_ratio, hdi, transformed_dist
|
||||
from .fs import pickle_read_compressed, pickle_read_encrypted, pickle_write_compressed, pickle_write_encrypted
|
||||
from .regress import PenalisedLogit, regress, vif
|
||||
|
@ -15,9 +15,7 @@
|
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
class BayesFactor:
|
||||
"""
|
||||
A Bayes factor
|
||||
"""
|
||||
"""A Bayes factor"""
|
||||
|
||||
def __init__(self, factor, num_symbol, num_desc, denom_symbol, denom_desc):
|
||||
self.factor = factor
|
||||
|
@ -284,9 +284,7 @@ transformed_dist = transformed_gen(name='transformed')
|
||||
ConfidenceInterval = collections.namedtuple('ConfidenceInterval', ['lower', 'upper'])
|
||||
|
||||
def hdi(distribution, level=0.95):
|
||||
"""
|
||||
Get the highest density interval for the distribution, e.g. for a Bayesian posterior, the highest posterior density interval (HPD/HDI)
|
||||
"""
|
||||
"""Get the highest density interval for the distribution, e.g. for a Bayesian posterior, the highest posterior density interval (HPD/HDI)"""
|
||||
|
||||
# For a given lower limit, we can compute the corresponding 95% interval
|
||||
def interval_width(lower):
|
||||
|
@ -188,9 +188,7 @@ class PearsonChiSquaredResult:
|
||||
self.ct, self.dof, self.statistic, fmt_p(self.pvalue, html=False))
|
||||
|
||||
def chi2(df, dep, ind, *, nan_policy='warn'):
|
||||
"""
|
||||
Perform a Pearson chi-squared test
|
||||
"""
|
||||
"""Perform a Pearson chi-squared test"""
|
||||
|
||||
# Check for/clean NaNs
|
||||
df = check_nan(df[[ind, dep]], nan_policy)
|
||||
@ -209,7 +207,7 @@ def chi2(df, dep, ind, *, nan_policy='warn'):
|
||||
|
||||
if ct.shape == (2,2):
|
||||
# 2x2 table
|
||||
# Use statsmodels to get OR andRR
|
||||
# Use statsmodels to get OR and RR
|
||||
|
||||
smct = sm.stats.Table2x2(np.flip(ct.to_numpy()), shift_zeros=False)
|
||||
result = smct.test_nominal_association()
|
||||
|
Loading…
Reference in New Issue
Block a user