Refactor and add test for correlation ratio (eta) in yli.auto_correlations

This commit is contained in:
RunasSudo 2024-05-16 23:11:43 +10:00
parent 7d080f7d20
commit b7a66849ff
Signed by: RunasSudo
GPG Key ID: 7234E476BF21C61A
2 changed files with 32 additions and 18 deletions

View File

@ -1,5 +1,5 @@
# scipy-yli: Helpful SciPy utilities and recipes # scipy-yli: Helpful SciPy utilities and recipes
# Copyright © 2022–2023 Lee Yingtong Li (RunasSudo) # Copyright © 2022–2024 Lee Yingtong Li (RunasSudo)
# #
# This program is free software: you can redistribute it and/or modify # This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by # it under the terms of the GNU Affero General Public License as published by
@ -16,6 +16,7 @@
from pytest import approx from pytest import approx
import numpy as np
import pandas as pd import pandas as pd
import yli import yli
@ -66,3 +67,15 @@ def test_spearman_ol11_17():
expected_summary = 'ρ (95% CI) = 0.87 (0.60–0.96); p < 0.001*' # NB: The confidence intervals are unvalidated expected_summary = 'ρ (95% CI) = 0.87 (0.60–0.96); p < 0.001*' # NB: The confidence intervals are unvalidated
assert result.summary() == expected_summary assert result.summary() == expected_summary
assert result._repr_html_() == '<i>ρ</i> (95% CI) = 0.87 (0.60–0.96); <i>p</i> &lt; 0.001*' assert result._repr_html_() == '<i>ρ</i> (95% CI) = 0.87 (0.60–0.96); <i>p</i> &lt; 0.001*'
def test_eta_wikipedia():
"""Compare _compute_eta, used in yli.auto_correlations, for https://en.wikipedia.org/w/index.php?title=Correlation_ratio&oldid=1203268770#Example"""
df = pd.DataFrame({
'Subject': ['Algebra'] * 5 + ['Geometry'] * 4 + ['Statistics'] * 6,
'Score': [45, 70, 29, 15, 21, 40, 20, 30, 42, 65, 95, 80, 70, 85, 73]
})
result = yli.descriptives._compute_eta(df, 'Subject', 'Score')
assert result == np.sqrt(6780/9640)

View File

@ -238,32 +238,18 @@ def auto_correlations(df, cols):
else: else:
# Categorical-nominal, etc. # Categorical-nominal, etc.
# Compute eta # Compute eta
ssw = 0 statistic = _compute_eta(df_2cols, col1, col2)
ssb = 0
values_mean = df_2cols[col2].astype('float64').mean()
for category in df_2cols[col1].unique():
subgroup = df_2cols[df_2cols[col1] == category][col2].astype('float64')
ssw += ((subgroup - subgroup.mean())**2).sum()
ssb += len(subgroup) * (subgroup.mean() - values_mean)**2
statistic = (ssb / (ssb + ssw))**0.5
df_corr.loc[col1, col2] = statistic df_corr.loc[col1, col2] = statistic
df_corr.loc[col2, col1] = statistic df_corr.loc[col2, col1] = statistic
else: else:
if col2 in categorical_columns and len(df_coded[col2].unique()) > 2: if col2 in categorical_columns and len(df_coded[col2].unique()) > 2:
# Categorical-nominal, etc. # Categorical-nominal, etc.
# Compute eta # Compute eta
ssw = 0 statistic = _compute_eta(df_2cols, col2, col1)
ssb = 0
values_mean = df_2cols[col1].astype('float64').mean()
for category in df_2cols[col2].unique():
subgroup = df_2cols[df_2cols[col2] == category][col1].astype('float64')
ssw += ((subgroup - subgroup.mean())**2).sum()
ssb += len(subgroup) * (subgroup.mean() - values_mean)**2
statistic = (ssb / (ssb + ssw))**0.5
df_corr.loc[col1, col2] = statistic df_corr.loc[col1, col2] = statistic
df_corr.loc[col2, col1] = statistic df_corr.loc[col2, col1] = statistic
else: else:
# Nominal-nominal, etc. # Continuous-continuous, etc.
# Compute Pearson r (or Spearman rho, point-biserial, etc.) # Compute Pearson r (or Spearman rho, point-biserial, etc.)
statistic = stats.pearsonr(df_2cols[col1], df_2cols[col2]).statistic statistic = stats.pearsonr(df_2cols[col1], df_2cols[col2]).statistic
df_corr.loc[col1, col2] = statistic df_corr.loc[col1, col2] = statistic
@ -274,6 +260,21 @@ def auto_correlations(df, cols):
return AutoCorrelationsResult(df_corr) return AutoCorrelationsResult(df_corr)
def _compute_eta(df, col_category, col_numeric):
"""
Compute the correlation ratio, *η*
"""
ssw = 0
ssb = 0
values_mean = df[col_numeric].astype('float64').mean()
for category in df[col_category].unique():
subgroup = df[df[col_category] == category][col_numeric].astype('float64')
ssw += ((subgroup - subgroup.mean())**2).sum()
ssb += len(subgroup) * (subgroup.mean() - values_mean)**2
statistic = (ssb / (ssb + ssw))**0.5
return statistic
class AutoCorrelationsResult: class AutoCorrelationsResult:
""" """
Result of automatically computed pairwise correlation coefficients Result of automatically computed pairwise correlation coefficients