parent
d3842e1645
commit
cbb79207ae
@ -0,0 +1,94 @@ |
||||
# scipy-yli: Helpful SciPy utilities and recipes |
||||
# Copyright © 2022 Lee Yingtong Li (RunasSudo) |
||||
# |
||||
# This program is free software: you can redistribute it and/or modify |
||||
# it under the terms of the GNU Affero General Public License as published by |
||||
# the Free Software Foundation, either version 3 of the License, or |
||||
# (at your option) any later version. |
||||
# |
||||
# This program is distributed in the hope that it will be useful, |
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
# GNU Affero General Public License for more details. |
||||
# |
||||
# You should have received a copy of the GNU Affero General Public License |
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>. |
||||
|
||||
import numpy as np |
||||
from scipy import stats |
||||
|
||||
import yli |
||||
|
||||
def test_beta_ratio_cdf_vs_empirical(): |
||||
"""Compare beta_ratio.cdf with empirical distribution""" |
||||
|
||||
# Define the example beta distribution |
||||
beta1 = stats.beta(3, 6) |
||||
beta2 = stats.beta(12, 7) |
||||
dist = yli.beta_oddsratio.from_scipy(beta1, beta2) |
||||
|
||||
# Compute empirical distribution |
||||
samples_p1 = beta1.rvs(10_000, random_state=31415) |
||||
samples_p2 = beta2.rvs(10_000, random_state=92653) |
||||
sample = (samples_p1 / (1 - samples_p1)) / (samples_p2 / (1 - samples_p2)) |
||||
|
||||
# Values to check |
||||
x = np.linspace(0, 2, 10) |
||||
y1 = dist.cdf(x) |
||||
y2 = [(sample < xx).sum()/sample.size for xx in x] |
||||
|
||||
# Allow 0.01 tolerance |
||||
assert (np.abs(y1 - y2) < 0.01).all() |
||||
|
||||
def test_beta_ratio_ppf_vs_empirical(): |
||||
"""Compare beta_ratio.ppf with empirical distribution""" |
||||
|
||||
# Define the example beta distribution |
||||
beta1 = stats.beta(3, 6) |
||||
beta2 = stats.beta(12, 7) |
||||
dist = yli.beta_oddsratio.from_scipy(beta1, beta2) |
||||
|
||||
# Compute empirical distribution |
||||
samples_p1 = beta1.rvs(10_000, random_state=31415) |
||||
samples_p2 = beta2.rvs(10_000, random_state=92653) |
||||
sample = (samples_p1 / (1 - samples_p1)) / (samples_p2 / (1 - samples_p2)) |
||||
|
||||
# Values to check |
||||
x = np.linspace(0, 0.9, 10) |
||||
y1 = dist.ppf(x) |
||||
y2 = np.quantile(sample, x) |
||||
|
||||
# Allow 0.01 tolerance |
||||
assert (np.abs(y1 - y2) < 0.01).all() |
||||
|
||||
def test_beta_ratio_mean_vs_empirical(): |
||||
"""Compare beta_ratio.mean (vs _munp) with empirical mean""" |
||||
|
||||
# Define the example beta distribution |
||||
beta1 = stats.beta(3, 6) |
||||
beta2 = stats.beta(12, 7) |
||||
dist = yli.beta_oddsratio.from_scipy(beta1, beta2) |
||||
|
||||
# Compute empirical mean |
||||
samples_p1 = beta1.rvs(10_000, random_state=31415) |
||||
samples_p2 = beta2.rvs(10_000, random_state=92653) |
||||
sample = (samples_p1 / (1 - samples_p1)) / (samples_p2 / (1 - samples_p2)) |
||||
|
||||
# Allow 0.01 tolerance |
||||
assert np.abs(dist.mean() - sample.mean()) < 0.01 |
||||
|
||||
def test_beta_ratio_var_vs_empirical(): |
||||
"""Compare beta_ratio.var (vs _munp) with empirical variance""" |
||||
|
||||
# Define the example beta distribution |
||||
beta1 = stats.beta(3, 6) |
||||
beta2 = stats.beta(12, 7) |
||||
dist = yli.beta_oddsratio.from_scipy(beta1, beta2) |
||||
|
||||
# Compute empirical mean |
||||
samples_p1 = beta1.rvs(10_000, random_state=31415) |
||||
samples_p2 = beta2.rvs(10_000, random_state=92653) |
||||
sample = (samples_p1 / (1 - samples_p1)) / (samples_p2 / (1 - samples_p2)) |
||||
|
||||
# Allow 0.01 tolerance |
||||
assert np.abs(dist.var() - sample.var()) < 0.01 |
Loading…
Reference in new issue