Implement yli.kaplanmeier

This commit is contained in:
RunasSudo 2023-02-25 17:15:22 +11:00
parent 642d0d4e4f
commit e83aa88b19
Signed by: RunasSudo
GPG Key ID: 7234E476BF21C61A
2 changed files with 106 additions and 1 deletions

View File

@ -1,5 +1,5 @@
# scipy-yli: Helpful SciPy utilities and recipes # scipy-yli: Helpful SciPy utilities and recipes
# Copyright © 2022 Lee Yingtong Li (RunasSudo) # Copyright © 2022–2023 Lee Yingtong Li (RunasSudo)
# #
# This program is free software: you can redistribute it and/or modify # This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by # it under the terms of the GNU Affero General Public License as published by
@ -22,6 +22,7 @@ from .graphs import init_fonts
from .io import pickle_read_compressed, pickle_read_encrypted, pickle_write_compressed, pickle_write_encrypted from .io import pickle_read_compressed, pickle_read_encrypted, pickle_write_compressed, pickle_write_encrypted
from .regress import OrdinalLogit, PenalisedLogit, logit_then_regress, regress, vif from .regress import OrdinalLogit, PenalisedLogit, logit_then_regress, regress, vif
from .sig_tests import anova_oneway, auto_univariable, chi2, mannwhitney, pearsonr, spearman, ttest_ind from .sig_tests import anova_oneway, auto_univariable, chi2, mannwhitney, pearsonr, spearman, ttest_ind
from .survival import kaplanmeier
from .utils import as_ordinal from .utils import as_ordinal
def reload_me(): def reload_me():

104
yli/survival.py Normal file
View File

@ -0,0 +1,104 @@
# scipy-yli: Helpful SciPy utilities and recipes
# Copyright © 2022–2023 Lee Yingtong Li (RunasSudo)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from scipy import stats
import statsmodels.api as sm
from .config import config
from .utils import check_nan
def kaplanmeier(df, time, status, by=None, ci=True, nan_policy='warn'):
# TODO: Documentation
import matplotlib.pyplot as plt
# Check for/clean NaNs
if by:
df = check_nan(df[[time, status, by]], nan_policy)
else:
df = check_nan(df[[time, status]], nan_policy)
if df[time].dtype == '<m8[ns]':
df[time] = df[time].dt.total_seconds()
# Auto-detect best time units
if df[time].max() > 365.24*24*60*60:
df[time] = df[time] / (365.24*24*60*60)
time_units = 'years'
elif df[time].max() > 7*24*60*60 / 12:
df[time] = df[time] / (7*24*60*60)
time_units = 'weeks'
elif df[time].max() > 24*60*60:
df[time] = df[time] / (24*60*60)
time_units = 'days'
elif df[time].max() > 60*60:
df[time] = df[time] / (60*60)
time_units = 'hours'
elif df[time].max() > 60:
df[time] = df[time] / 60
time_units = 'minutes'
else:
time_units = 'seconds'
else:
time_units = None
fig, ax = plt.subplots()
if by is not None:
# Group by independent variable
groups = df.groupby(by)
for group in groups.groups:
subset = groups.get_group(group)
handle = plot_survfunc(ax, subset[time], subset[status], ci)
handle.set_label('{} = {}'.format(by, group))
else:
# No grouping
plot_survfunc(ax, df[time], df[status], ci)
if time_units:
ax.set_xlabel('{} ({})'.format(time, time_units))
else:
ax.set_xlabel(time)
ax.set_ylabel('Survival probability ({:.0%} CI)'.format(1-config.alpha) if ci else 'Survival probability')
ax.set_ylim(0, 1)
ax.legend()
return ax
def plot_survfunc(ax, time, status, ci):
# Estimate the survival function
sf = sm.SurvfuncRight(time, status)
# Draw straight lines
xpoints = sf.surv_times.repeat(2)[1:]
ypoints = sf.surv_prob.repeat(2)[:-1]
handle = ax.plot(xpoints, ypoints)[0]
if ci:
zstar = -stats.norm.ppf(config.alpha/2)
# Get confidence intervals
ci0 = sf.surv_prob - zstar * sf.surv_prob_se
ci1 = sf.surv_prob + zstar * sf.surv_prob_se
# Plot confidence intervals
ypoints0 = ci0.repeat(2)[:-1]
ypoints1 = ci1.repeat(2)[:-1]
ax.fill_between(xpoints, ypoints0, ypoints1, alpha=0.3, label='_')
return handle