# scipy-yli: Helpful SciPy utilities and recipes # Copyright © 2022–2023 Lee Yingtong Li (RunasSudo) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see . import numpy as np from scipy import stats import statsmodels.api as sm from .config import config from .sig_tests import ChiSquaredResult from .utils import Estimate, check_nan def kaplanmeier(df, time, status, by=None, *, ci=True, transform_x=None, transform_y=None, nan_policy='warn'): """ Generate a Kaplan–Meier plot Uses the Python *matplotlib* library. :param df: Data to generate plot for :type df: DataFrame :param time: Column in *df* for the time to event (numeric or timedelta) :type time: str :param status: Column in *df* for the status variable (True/False or 1/0) :type status: str :param by: Column in *df* to stratify by (categorical) :type by: str :param ci: Whether to plot confidence intervals around the survival function :type ci: bool :param transform_x: Function to transform x axis by :type transform_x: callable :param transform_y: Function to transform y axis by :type transform_y: callable :param nan_policy: How to handle *nan* values (see :ref:`nan-handling`) :type nan_policy: str :rtype: (Figure, Axes) """ import matplotlib.pyplot as plt # Check for/clean NaNs if by: df = check_nan(df[[time, status, by]], nan_policy) else: df = check_nan(df[[time, status]], nan_policy) # Covert timedelta to numeric df, time_units = survtime_to_numeric(df, time) fig, ax = plt.subplots() if by is not None: # Group by independent variable groups = df.groupby(by) for group in groups.groups: subset = groups.get_group(group) handle = plot_survfunc_kaplanmeier(ax, subset[time], subset[status], ci, transform_x, transform_y) handle.set_label('{} = {}'.format(by, group)) else: # No grouping plot_survfunc_kaplanmeier(ax, df[time], df[status], ci, transform_x, transform_y) if time_units: ax.set_xlabel('{} ({})'.format(time, time_units)) else: ax.set_xlabel(time) ax.set_ylabel('Survival probability ({:.0%} CI)'.format(1-config.alpha) if ci else 'Survival probability') ax.set_xlim(left=0) ax.set_ylim(0, 1) ax.legend() return fig, ax def plot_survfunc_kaplanmeier(ax, time, status, ci, transform_x=None, transform_y=None): # Estimate the survival function sf = sm.SurvfuncRight(time, status) # Draw straight lines # np.concatenate(...) to force starting drawing from time 0, survival 100% xpoints = np.concatenate([[0], sf.surv_times]).repeat(2)[1:] ypoints = np.concatenate([[1], sf.surv_prob]).repeat(2)[:-1] handle = ax.plot(xpoints, ypoints)[0] if transform_x: xpoints = transform_x(xpoints) if transform_y: ypoints = transform_y(ypoints) if ci: zstar = -stats.norm.ppf(config.alpha/2) # Get confidence intervals ci0 = sf.surv_prob - zstar * sf.surv_prob_se ci1 = sf.surv_prob + zstar * sf.surv_prob_se # Plot confidence intervals ypoints0 = np.concatenate([[1], ci0]).repeat(2)[:-1] ypoints1 = np.concatenate([[1], ci1]).repeat(2)[:-1] if transform_y: ypoints0 = transform_y(ypoints0) ypoints1 = transform_y(ypoints1) ax.fill_between(xpoints, ypoints0, ypoints1, alpha=0.3, label='_') return handle def turnbull(df, time_left, time_right, by=None, *, step_loc=0.5, transform_x=None, transform_y=None, nan_policy='warn'): """ Generate a Turnbull estimator plot, which extends the Kaplan–Meier estimator to interval-censored observations The intervals are assumed to be half-open intervals, (*left*, *right*]. *right* == *np.inf* implies the event was right-censored. Unlike :func:`yli.kaplanmeier`, times must be given as numeric dtypes and not as pandas timedelta. By default, the survival function is drawn as a step function at the midpoint of each Turnbull interval. Uses the Python *lifelines* and *matplotlib* libraries. :param df: Data to generate plot for :type df: DataFrame :param time_left: Column in *df* for the time to event, left interval endpoint (numeric) :type time_left: str :param time_right: Column in *df* for the time to event, right interval endpoint (numeric) :type time_right: str :param by: Column in *df* to stratify by (categorical) :type by: str :param step_loc: Proportion along the length of each Turnbull interval to step down the survival function, e.g. 0 for left bound, 1 for right bound, 0.5 for interval midpoint (numeric) :type step_loc: float :param transform_x: Function to transform x axis by :type transform_x: callable :param transform_y: Function to transform y axis by :type transform_y: callable :param nan_policy: How to handle *nan* values (see :ref:`nan-handling`) :type nan_policy: str :rtype: (Figure, Axes) """ import matplotlib.pyplot as plt # Check for/clean NaNs if by: df = check_nan(df[[time_left, time_right, by]], nan_policy) else: df = check_nan(df[[time_left, time_right]], nan_policy) fig, ax = plt.subplots() if by is not None: # Group by independent variable groups = df.groupby(by) for group in groups.groups: subset = groups.get_group(group) handle = plot_survfunc_turnbull(ax, subset[time_left], subset[time_right], step_loc, transform_x, transform_y) handle.set_label('{} = {}'.format(by, group)) else: # No grouping plot_survfunc_turnbull(ax, df[time_left], df[time_right], step_loc, transform_x, transform_y) ax.set_xlabel('Analysis time') ax.set_ylabel('Survival probability') ax.set_xlim(left=0) ax.set_ylim(0, 1) ax.legend() return fig, ax def plot_survfunc_turnbull(ax, time_left, time_right, step_loc=0.5, transform_x=None, transform_y=None): xpoints, ypoints = calc_survfunc_turnbull(time_left, time_right, step_loc, transform_x, transform_y) handle = ax.plot(xpoints, ypoints)[0] return handle def calc_survfunc_turnbull(time_left, time_right, step_loc=0.5, transform_x=None, transform_y=None): from lifelines.fitters.npmle import npmle EPSILON = 1e-10 # TODO: Support left == right => failure was exactly observed followup_left = time_left + EPSILON # Add epsilon to make interval half-open followup_right = time_right # Estimate the survival function #sf = lifelines.KaplanMeierFitter().fit_interval_censoring(followup_left, followup_right) # Call lifelines.fitters.npmle.npmle directly so we can compute midpoints, etc. sf_probs, turnbull_intervals = npmle(followup_left, followup_right) xpoints = [i.left*(1-step_loc) + i.right*step_loc for i in turnbull_intervals] ypoints = 1 - np.cumsum(sf_probs) # Draw straight lines # np.concatenate(...) to force starting drawing from time 0, survival 100% xpoints = np.concatenate([[0], xpoints]).repeat(2)[1:] ypoints = np.concatenate([[1], ypoints]).repeat(2)[:-1] if transform_x: xpoints = transform_x(xpoints) if transform_y: ypoints = transform_y(ypoints) return xpoints, ypoints def survtime_to_numeric(df, time): """ Convert pandas timedelta dtype to float64, auto-detecting the best time unit to display :param df: Data to check for pandas timedelta dtype :type df: DataFrame :param time: Column to check for pandas timedelta dtype :type df: DataFrame :return: (*df*, *time_units*) * **df** (*DataFrame*) – Data with pandas timedelta dtypes converted, which is *not* copied * **time_units** (*str*) – Human-readable description of the time unit, or *None* if not converted """ if df[time].dtype == ' 365.24*24*60*60: df[time] = df[time] / (365.24*24*60*60) time_units = 'years' elif df[time].max() > 7*24*60*60 / 12: df[time] = df[time] / (7*24*60*60) time_units = 'weeks' elif df[time].max() > 24*60*60: df[time] = df[time] / (24*60*60) time_units = 'days' elif df[time].max() > 60*60: df[time] = df[time] / (60*60) time_units = 'hours' elif df[time].max() > 60: df[time] = df[time] / 60 time_units = 'minutes' else: time_units = 'seconds' return df, time_units else: return df, None def logrank(df, time, status, by, nan_policy='warn'): """ Perform the log-rank test for equality of survival functions :param df: Data to perform the test on :type df: DataFrame :param time: Column in *df* for the time to event (numeric or timedelta) :type time: str :param status: Column in *df* for the status variable (True/False or 1/0) :type status: str :param by: Column in *df* to stratify by (categorical) :type by: str :param nan_policy: How to handle *nan* values (see :ref:`nan-handling`) :type nan_policy: str :rtype: :class:`yli.sig_tests.ChiSquaredResult` """ # TODO: Example # Check for/clean NaNs df = check_nan(df[[time, status, by]], nan_policy) if df[time].dtype == '