# scipy-yli: Helpful SciPy utilities and recipes # Copyright © 2022 Lee Yingtong Li (RunasSudo) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see . import mpmath import numpy as np from scipy import stats class betarat_gen(stats.rv_continuous): """ Ratio of 2 independent beta-distributed variables Ratio of Beta(a1, b1) / Beta(a2, b2) References: 1. Pham-Gia T. Distributions of the ratios of independent beta variables and applications. Communications in Statistics: Theory and Methods. 2000;29(12):2693–715. doi: 10.1080/03610920008832632 2. Weekend Editor. On the ratio of Beta-distributed random variables. Some Weekend Reading. 2021 Sep 13. https://www.someweekendreading.blog/beta-ratios/ """ def from_scipy(self, beta1, beta2): """Construct a new beta_ratio distribution from two SciPy beta distributions""" return self(*beta1.args, *beta2.args) def _do_vectorized(self, func, x, a1, b1, a2, b2): """Helper function to call the implementation over potentially multiple values""" x = np.atleast_1d(x) result = np.zeros(x.size) for i, (x_, a1_, b1_, a2_, b2_) in enumerate(zip(x, np.pad(a1, x.size, 'edge'), np.pad(b1, x.size, 'edge'), np.pad(a2, x.size, 'edge'), np.pad(b2, x.size, 'edge'))): result[i] = func(x_, a1_, b1_, a2_, b2_) return result def _pdf_one(self, w, a1, b1, a2, b2): """PDF for the distribution, given by Pham-Gia""" if w <= 0: return 0 elif w < 1: term1 = mpmath.beta(a1 + a2, b2) / (mpmath.beta(a1, b1) * mpmath.beta(a2, b2)) term2 = mpmath.power(w, a1 - 1) term3 = mpmath.hyp2f1(a1 + a2, 1 - b1, a1 + a2 + b2, w) else: term1 = mpmath.beta(a1 + a2, b1) / (mpmath.beta(a1, b1) * mpmath.beta(a2, b2)) term2 = 1 / mpmath.power(w, a2 + 1) term3 = mpmath.hyp2f1(a1 + a2, 1 - b2, a1 + a2 + b1, 1/w) return float(term1 * term2 * term3) def _pdf(self, w, a1, b1, a2, b2): return self._do_vectorized(self._pdf_one, w, a1, b1, a2, b2) def _cdf_one(self, w, a1, b1, a2, b2): """PDF for the distribution, given by Pham-Gia""" if w <= 0: return 0 elif w < 1: term1 = mpmath.beta(a1 + a2, b2) / (mpmath.beta(a1, b1) * mpmath.beta(a2, b2)) term2 = mpmath.power(w, a1) / a1 term3 = mpmath.hyper([a1, a1 + a2, 1 - b1], [a1 + 1, a1 + a2 + b2], w) return float(term1 * term2 * term3) else: term1 = mpmath.beta(a1 + a2, b1) / (mpmath.beta(a1, b1) * mpmath.beta(a2, b2)) term2 = 1 / (a2 * mpmath.power(w, a2)) term3 = mpmath.hyper([a2, a1 + a2, 1 - b2], [a2 + 1, a1 + a2 + b1], 1/w) return 1 - float(term1 * term2 * term3) def _cdf(self, w, a1, b1, a2, b2): return self._do_vectorized(self._cdf_one, w, a1, b1, a2, b2) def _munp_one(self, k, a1, b1, a2, b2): """Moments of the distribution, given by Weekend Editor""" term1 = mpmath.rf(a1, k) / mpmath.rf(a1 + b1, k) term2 = mpmath.rf(a2 + b2 - k, k) / mpmath.rf(a2 - k, k) return float(term1 * term2) def _munp(self, k, a1, b1, a2, b2): return self._do_vectorized(self._munp_one, k, a1, b1, a2, b2) beta_ratio = betarat_gen(name='beta_ratio', a=0)