94 lines
3.1 KiB
Python
94 lines
3.1 KiB
Python
# scipy-yli: Helpful SciPy utilities and recipes
|
|
# Copyright © 2022 Lee Yingtong Li (RunasSudo)
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU Affero General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU Affero General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Affero General Public License
|
|
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
class BayesFactor:
|
|
"""
|
|
A Bayes factor
|
|
"""
|
|
|
|
def __init__(self, factor, num_symbol, num_desc, denom_symbol, denom_desc):
|
|
self.factor = factor
|
|
|
|
self.num_symbol = num_symbol
|
|
self.num_desc = num_desc
|
|
self.denom_symbol = denom_symbol
|
|
self.denom_desc = denom_desc
|
|
|
|
def _repr_html_(self):
|
|
return 'BF<sub>{0}{1}</sub> = {2:.2f}, {5}<br>H<sub>{0}</sub>: {3}<br>H<sub>{1}</sub>: {4}'.format(self.num_symbol, self.denom_symbol, self.factor, self.num_desc, self.denom_desc, self.interpret_lw(html=True))
|
|
|
|
def summary(self):
|
|
return 'BF{0}{1} = {2:.2f}, {5}\nH{0}: {3}\nH{1}: {4}'.format(self.num_symbol, self.denom_symbol, self.factor, self.num_desc, self.denom_desc, self.interpret_lw(html=False))
|
|
|
|
def invert(self):
|
|
"""Invert the Bayes factor"""
|
|
|
|
return BayesFactor(1 / self.factor, self.denom_symbol, self.denom_desc, self.num_symbol, self.num_desc)
|
|
|
|
def interpret_lw(self, html):
|
|
"""Interpret the Bayes factor according to the Lee & Wagenmakers classification scheme"""
|
|
|
|
if self.factor == 1:
|
|
return 'Evidence favours neither hypothesis to the other'
|
|
|
|
if self.factor < 1:
|
|
return self.invert().interpret_lw()
|
|
|
|
if self.factor < 3:
|
|
level = 'Anecdotal'
|
|
elif self.factor < 10:
|
|
level = 'Moderate'
|
|
elif self.factor < 30:
|
|
level = 'Strong'
|
|
elif self.factor < 100:
|
|
level = 'Very strong'
|
|
else:
|
|
level = 'Extreme'
|
|
|
|
if html:
|
|
return '{} evidence in favour of H<sub>{}</sub>'.format(level, self.num_symbol)
|
|
else:
|
|
return '{} evidence in favour of H{}'.format(level, self.num_symbol)
|
|
|
|
def bayesfactor_afbf(params, cov, n, hypothesis):
|
|
"""
|
|
Compute an adjusted fractional Bayes factor for the hypothesis
|
|
Using R "BFpack" library
|
|
|
|
See R documentation for BFpack.BF
|
|
|
|
Returns Bayes factor for hypothesis vs its complement
|
|
"""
|
|
|
|
import rpy2.robjects as ro
|
|
import rpy2.robjects.packages
|
|
import rpy2.robjects.pandas2ri
|
|
|
|
# Import BFpack
|
|
ro.packages.importr('BFpack')
|
|
|
|
with ro.conversion.localconverter(ro.default_converter + ro.pandas2ri.converter):
|
|
with ro.local_context() as lc:
|
|
lc['params'] = params
|
|
lc['cov'] = cov
|
|
lc['n'] = n
|
|
lc['hypothesis'] = hypothesis
|
|
|
|
ro.r('bf_fit <- BF(params, Sigma=as.matrix(cov), n=n, hypothesis=hypothesis)')
|
|
bf_matrix = ro.r('bf_fit$BFmatrix_confirmatory')
|
|
|
|
return BayesFactor(bf_matrix[0][1], '1', hypothesis, 'C', 'Complement')
|