81 lines
2.6 KiB
Python
81 lines
2.6 KiB
Python
# scipy-yli: Helpful SciPy utilities and recipes
|
|
# Copyright © 2022 Lee Yingtong Li (RunasSudo)
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU Affero General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU Affero General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Affero General Public License
|
|
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
import numpy as np
|
|
|
|
import yli
|
|
|
|
def test_beta_ratio_vs_jsaffer_pdf():
|
|
"""Compare beta_ratio.pdf with result from https://github.com/jsaffer/beta_quotient_distribution"""
|
|
|
|
# Define the example beta distribution
|
|
a1, b1, a2, b2 = 3, 6, 12, 7
|
|
|
|
# Compute PDF
|
|
x = np.linspace(0, 2, 100)
|
|
dist = yli.beta_ratio(a1, b1, a2, b2)
|
|
y = dist.pdf(x)
|
|
|
|
# Compare with expected values from jsaffer implementation
|
|
expected = np.load('beta_ratio_vs_jsaffer.npy', allow_pickle=False)[0]
|
|
|
|
# Allow 1e-10 tolerance
|
|
diff = np.abs(y - expected)
|
|
assert (diff < 1e-10).all()
|
|
|
|
def test_beta_ratio_vs_jsaffer_cdf():
|
|
"""Compare beta_ratio.cdf with result from https://github.com/jsaffer/beta_quotient_distribution"""
|
|
|
|
# Define the example beta distribution
|
|
a1, b1, a2, b2 = 3, 6, 12, 7
|
|
|
|
# Compute PDF
|
|
x = np.linspace(0, 2, 100)
|
|
dist = yli.beta_ratio(a1, b1, a2, b2)
|
|
y = dist.cdf(x)
|
|
|
|
# Compare with expected values from jsaffer implementation
|
|
expected = np.load('beta_ratio_vs_jsaffer.npy', allow_pickle=False)[1]
|
|
|
|
# Allow 1e-10 tolerance
|
|
diff = np.abs(y - expected)
|
|
assert (diff < 1e-10).all()
|
|
|
|
def _gen_beta_ratio_vs_jsaffer():
|
|
"""Generate beta_ratio_vs_jsaffer.npy for test_beta_ratio_vs_jsaffer_pdf/cdf"""
|
|
|
|
import beta_quotient_distribution
|
|
|
|
a1, b1, a2, b2 = 3, 6, 12, 7
|
|
|
|
x = np.linspace(0, 2, 100)
|
|
y1 = np.vectorize(lambda w: float(beta_quotient_distribution.pdf_bb_ratio(a1, a2, b1, b2, w)))(x)
|
|
y2 = np.vectorize(lambda w: float(beta_quotient_distribution.cdf_bb_ratio(a1, a2, b1, b2, w)))(x)
|
|
|
|
np.save('beta_ratio_vs_jsaffer.npy', np.array([y1, y2]), allow_pickle=False)
|
|
|
|
def test_beta_ratio_mean_vs_empirical():
|
|
"""Compare beta_ratio.mean (via beta_ratio._munp) with empirical mean"""
|
|
|
|
# Define the example beta distribution
|
|
dist = yli.beta_ratio(3, 6, 12, 7)
|
|
|
|
# Compute empirical mean
|
|
sample = dist.rvs(1000, random_state=31415)
|
|
|
|
# Allow 0.01 tolerance
|
|
assert np.abs(dist.mean() - sample.mean()) < 0.01
|