turnbull: Use Illinois method rather than interval bisection for likelihood-ratio confidence intervals
27% speedup NB: Regula falsi alone without Illinois adjustment was slower than interval bisection
This commit is contained in:
parent
760e3bbb0e
commit
759c2c4778
@ -14,48 +14,75 @@
|
|||||||
// You should have received a copy of the GNU Affero General Public License
|
// You should have received a copy of the GNU Affero General Public License
|
||||||
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
pub struct BisectionRootFinder {
|
pub struct IllinoisRootFinder {
|
||||||
bound_lower: f64,
|
bound_lower: f64,
|
||||||
bound_upper: f64,
|
bound_upper: f64,
|
||||||
value_lower: f64,
|
value_lower: f64,
|
||||||
value_upper: f64
|
value_upper: f64,
|
||||||
|
last_sign: f64 // Sign of the function at last evaluation (1.0 or -1.0) or 0.0 if first iteration
|
||||||
}
|
}
|
||||||
|
|
||||||
impl BisectionRootFinder {
|
impl IllinoisRootFinder {
|
||||||
pub fn new(bound_lower: f64, bound_upper: f64, value_lower: f64, value_upper: f64,) -> BisectionRootFinder {
|
pub fn new(bound_lower: f64, bound_upper: f64, value_lower: f64, value_upper: f64) -> IllinoisRootFinder {
|
||||||
return BisectionRootFinder {
|
return IllinoisRootFinder {
|
||||||
bound_lower: bound_lower,
|
bound_lower: bound_lower,
|
||||||
bound_upper: bound_upper,
|
bound_upper: bound_upper,
|
||||||
value_lower: value_lower,
|
value_lower: value_lower,
|
||||||
value_upper: value_upper
|
value_upper: value_upper,
|
||||||
|
last_sign: 0.0
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn update(&mut self, guess: f64, value: f64) {
|
pub fn update(&mut self, guess: f64, mut value: f64) {
|
||||||
if value > 0.0 {
|
if value > 0.0 {
|
||||||
if self.value_lower > 0.0 || self.value_upper < 0.0 {
|
if self.value_lower > 0.0 || self.value_upper < 0.0 {
|
||||||
self.bound_lower = guess;
|
self.bound_lower = guess;
|
||||||
self.value_lower = value;
|
self.value_lower = value;
|
||||||
|
|
||||||
|
if self.last_sign == 1.0 {
|
||||||
|
// Illinois adjustment: Halve the y-value of the retained end point (the other end point) when the new y-value has the same sign as the previous one
|
||||||
|
self.value_upper *= 0.5;
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
self.bound_upper = guess;
|
self.bound_upper = guess;
|
||||||
self.value_upper = value;
|
self.value_upper = value;
|
||||||
|
|
||||||
|
if self.last_sign == 1.0 {
|
||||||
|
self.value_lower *= 0.5;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
self.last_sign = 1.0;
|
||||||
} else {
|
} else {
|
||||||
if self.value_lower < 0.0 || self.value_upper > 0.0 {
|
if self.value_lower < 0.0 || self.value_upper > 0.0 {
|
||||||
self.bound_lower = guess;
|
self.bound_lower = guess;
|
||||||
self.value_lower = value;
|
self.value_lower = value;
|
||||||
|
|
||||||
|
if self.last_sign == -1.0 {
|
||||||
|
self.value_upper *= 0.5;
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
self.bound_upper = guess;
|
self.bound_upper = guess;
|
||||||
self.value_upper = value;
|
self.value_upper = value;
|
||||||
|
|
||||||
|
if self.last_sign == -1.0 {
|
||||||
|
self.value_lower *= 0.5;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
self.last_sign = -1.0;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn next_guess(&self) -> f64 {
|
pub fn next_guess(&self) -> f64 {
|
||||||
|
if self.value_lower.is_nan() || self.value_upper.is_nan() {
|
||||||
|
// Fall back to interval bisection
|
||||||
return (self.bound_lower + self.bound_upper) / 2.0;
|
return (self.bound_lower + self.bound_upper) / 2.0;
|
||||||
|
} else {
|
||||||
|
// Regula falsi
|
||||||
|
return (self.bound_lower * self.value_upper - self.bound_upper * self.value_lower) / (self.value_upper - self.value_lower);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn precision(&self) -> f64 {
|
pub fn precision(&self) -> f64 {
|
||||||
return self.bound_upper - self.bound_lower;
|
return (self.bound_upper - self.bound_lower).abs();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -29,7 +29,7 @@ use serde::{Serialize, Deserialize};
|
|||||||
|
|
||||||
use crate::csv::read_csv;
|
use crate::csv::read_csv;
|
||||||
use crate::pava::monotonic_regression_pava;
|
use crate::pava::monotonic_regression_pava;
|
||||||
use crate::root_finding::BisectionRootFinder;
|
use crate::root_finding::IllinoisRootFinder;
|
||||||
use crate::term::UnconditionalTermLike;
|
use crate::term::UnconditionalTermLike;
|
||||||
|
|
||||||
#[derive(Args)]
|
#[derive(Args)]
|
||||||
@ -622,7 +622,7 @@ fn compute_hessian(data: &TurnbullData, p: &Vec<f64>) -> DMatrix<f64> {
|
|||||||
|
|
||||||
fn survival_prob_likelihood_ratio_ci(data: &TurnbullData, progress_bar: ProgressBar, max_iterations: u32, ll_tolerance: f64, ci_precision: f64, p: &Vec<f64>, ll_model: f64, s: &Vec<f64>, oim_se: &Vec<f64>, time_index: usize) -> (f64, f64) {
|
fn survival_prob_likelihood_ratio_ci(data: &TurnbullData, progress_bar: ProgressBar, max_iterations: u32, ll_tolerance: f64, ci_precision: f64, p: &Vec<f64>, ll_model: f64, s: &Vec<f64>, oim_se: &Vec<f64>, time_index: usize) -> (f64, f64) {
|
||||||
// Compute lower confidence limit
|
// Compute lower confidence limit
|
||||||
let mut root_finder = BisectionRootFinder::new(
|
let mut root_finder = IllinoisRootFinder::new(
|
||||||
0.0, s[time_index],
|
0.0, s[time_index],
|
||||||
f64::NAN, -CHI2_1DF_95 // Value of (lr_statistic - CHI2_1DF_95), which we are seeking the roots of
|
f64::NAN, -CHI2_1DF_95 // Value of (lr_statistic - CHI2_1DF_95), which we are seeking the roots of
|
||||||
);
|
);
|
||||||
@ -660,14 +660,14 @@ fn survival_prob_likelihood_ratio_ci(data: &TurnbullData, progress_bar: Progress
|
|||||||
let ci_lower = ci_estimate;
|
let ci_lower = ci_estimate;
|
||||||
|
|
||||||
// Compute upper confidence limit
|
// Compute upper confidence limit
|
||||||
root_finder = BisectionRootFinder::new(
|
root_finder = IllinoisRootFinder::new(
|
||||||
s[time_index], 1.0,
|
s[time_index], 1.0,
|
||||||
-CHI2_1DF_95, f64::NAN
|
-CHI2_1DF_95, f64::NAN // Value of (lr_statistic - CHI2_1DF_95), which we are seeking the roots of
|
||||||
);
|
);
|
||||||
|
|
||||||
ci_estimate = s[time_index] + Z_97_5 * oim_se[time_index - 1];
|
ci_estimate = s[time_index] + Z_97_5 * oim_se[time_index - 1];
|
||||||
if ci_estimate > 1.0 {
|
if ci_estimate > 1.0 {
|
||||||
ci_estimate = root_finder.next_guess();
|
ci_estimate = root_finder.next_guess(); // Returns interval midpoint in this case
|
||||||
}
|
}
|
||||||
|
|
||||||
let mut iteration = 1;
|
let mut iteration = 1;
|
||||||
|
Loading…
Reference in New Issue
Block a user