turnbull: Refactor root-finding code
This commit is contained in:
parent
307aff6f14
commit
760e3bbb0e
@ -3,4 +3,5 @@ pub mod turnbull;
|
||||
|
||||
mod csv;
|
||||
mod pava;
|
||||
mod root_finding;
|
||||
mod term;
|
||||
|
61
src/root_finding.rs
Normal file
61
src/root_finding.rs
Normal file
@ -0,0 +1,61 @@
|
||||
// hpstat: High-performance statistics implementations
|
||||
// Copyright © 2023 Lee Yingtong Li (RunasSudo)
|
||||
//
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
pub struct BisectionRootFinder {
|
||||
bound_lower: f64,
|
||||
bound_upper: f64,
|
||||
value_lower: f64,
|
||||
value_upper: f64
|
||||
}
|
||||
|
||||
impl BisectionRootFinder {
|
||||
pub fn new(bound_lower: f64, bound_upper: f64, value_lower: f64, value_upper: f64,) -> BisectionRootFinder {
|
||||
return BisectionRootFinder {
|
||||
bound_lower: bound_lower,
|
||||
bound_upper: bound_upper,
|
||||
value_lower: value_lower,
|
||||
value_upper: value_upper
|
||||
}
|
||||
}
|
||||
|
||||
pub fn update(&mut self, guess: f64, value: f64) {
|
||||
if value > 0.0 {
|
||||
if self.value_lower > 0.0 || self.value_upper < 0.0 {
|
||||
self.bound_lower = guess;
|
||||
self.value_lower = value;
|
||||
} else {
|
||||
self.bound_upper = guess;
|
||||
self.value_upper = value;
|
||||
}
|
||||
} else {
|
||||
if self.value_lower < 0.0 || self.value_upper > 0.0 {
|
||||
self.bound_lower = guess;
|
||||
self.value_lower = value;
|
||||
} else {
|
||||
self.bound_upper = guess;
|
||||
self.value_upper = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn next_guess(&self) -> f64 {
|
||||
return (self.bound_lower + self.bound_upper) / 2.0;
|
||||
}
|
||||
|
||||
pub fn precision(&self) -> f64 {
|
||||
return self.bound_upper - self.bound_lower;
|
||||
}
|
||||
}
|
@ -29,6 +29,7 @@ use serde::{Serialize, Deserialize};
|
||||
|
||||
use crate::csv::read_csv;
|
||||
use crate::pava::monotonic_regression_pava;
|
||||
use crate::root_finding::BisectionRootFinder;
|
||||
use crate::term::UnconditionalTermLike;
|
||||
|
||||
#[derive(Args)]
|
||||
@ -621,11 +622,14 @@ fn compute_hessian(data: &TurnbullData, p: &Vec<f64>) -> DMatrix<f64> {
|
||||
|
||||
fn survival_prob_likelihood_ratio_ci(data: &TurnbullData, progress_bar: ProgressBar, max_iterations: u32, ll_tolerance: f64, ci_precision: f64, p: &Vec<f64>, ll_model: f64, s: &Vec<f64>, oim_se: &Vec<f64>, time_index: usize) -> (f64, f64) {
|
||||
// Compute lower confidence limit
|
||||
let mut ci_bound_lower = 0.0;
|
||||
let mut ci_bound_upper = s[time_index];
|
||||
let mut root_finder = BisectionRootFinder::new(
|
||||
0.0, s[time_index],
|
||||
f64::NAN, -CHI2_1DF_95 // Value of (lr_statistic - CHI2_1DF_95), which we are seeking the roots of
|
||||
);
|
||||
|
||||
let mut ci_estimate = s[time_index] - Z_97_5 * oim_se[time_index - 1];
|
||||
if ci_estimate < 0.0 {
|
||||
ci_estimate = (ci_bound_lower + ci_bound_upper) / 2.0;
|
||||
ci_estimate = root_finder.next_guess(); // Returns interval midpoint in this case
|
||||
}
|
||||
|
||||
let mut iteration = 1;
|
||||
@ -639,17 +643,10 @@ fn survival_prob_likelihood_ratio_ci(data: &TurnbullData, progress_bar: Progress
|
||||
let (_p, ll_test) = fit_turnbull_estimator(data, progress_bar.clone(), max_iterations, ll_tolerance, p_test, Some(Constraint { time_index: time_index, survival_prob: ci_estimate }));
|
||||
let lr_statistic = 2.0 * (ll_model - ll_test);
|
||||
|
||||
if lr_statistic > CHI2_1DF_95 {
|
||||
// CI is too wide
|
||||
ci_bound_lower = ci_estimate;
|
||||
} else {
|
||||
// CI is too narrow
|
||||
ci_bound_upper = ci_estimate;
|
||||
}
|
||||
root_finder.update(ci_estimate, lr_statistic - CHI2_1DF_95);
|
||||
ci_estimate = root_finder.next_guess();
|
||||
|
||||
ci_estimate = (ci_bound_lower + ci_bound_upper) / 2.0;
|
||||
|
||||
if ci_bound_upper - ci_bound_lower <= ci_precision {
|
||||
if root_finder.precision() <= ci_precision {
|
||||
// Desired precision has been reached
|
||||
break;
|
||||
}
|
||||
@ -663,11 +660,14 @@ fn survival_prob_likelihood_ratio_ci(data: &TurnbullData, progress_bar: Progress
|
||||
let ci_lower = ci_estimate;
|
||||
|
||||
// Compute upper confidence limit
|
||||
ci_bound_lower = s[time_index];
|
||||
ci_bound_upper = 1.0;
|
||||
root_finder = BisectionRootFinder::new(
|
||||
s[time_index], 1.0,
|
||||
-CHI2_1DF_95, f64::NAN
|
||||
);
|
||||
|
||||
ci_estimate = s[time_index] + Z_97_5 * oim_se[time_index - 1];
|
||||
if ci_estimate > 1.0 {
|
||||
ci_estimate = (ci_bound_lower + ci_bound_upper) / 2.0;
|
||||
ci_estimate = root_finder.next_guess();
|
||||
}
|
||||
|
||||
let mut iteration = 1;
|
||||
@ -681,17 +681,10 @@ fn survival_prob_likelihood_ratio_ci(data: &TurnbullData, progress_bar: Progress
|
||||
let (_p, ll_test) = fit_turnbull_estimator(data, progress_bar.clone(), max_iterations, ll_tolerance, p_test, Some(Constraint { time_index: time_index, survival_prob: ci_estimate }));
|
||||
let lr_statistic = 2.0 * (ll_model - ll_test);
|
||||
|
||||
if lr_statistic > CHI2_1DF_95 {
|
||||
// CI is too wide
|
||||
ci_bound_upper = ci_estimate;
|
||||
} else {
|
||||
// CI is too narrow
|
||||
ci_bound_lower = ci_estimate;
|
||||
}
|
||||
root_finder.update(ci_estimate, lr_statistic - CHI2_1DF_95);
|
||||
ci_estimate = root_finder.next_guess();
|
||||
|
||||
ci_estimate = (ci_bound_lower + ci_bound_upper) / 2.0;
|
||||
|
||||
if ci_bound_upper - ci_bound_lower <= ci_precision {
|
||||
if root_finder.precision() <= ci_precision {
|
||||
// Desired precision has been reached
|
||||
break;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user