turnbull: Implement CIs by likelihood ratio test
This commit is contained in:
parent
993e4ba3e2
commit
b23ff26eac
@ -49,7 +49,11 @@
|
||||
%
|
||||
The sum of all $\nablasub{\hat{\symbf{F}}} \mathcal{L}_i$ yields the Hessian of the log-likelihood $\nablasub{\hat{\symbf{F}}} \mathcal{L}$.
|
||||
|
||||
The covariance matrix of $\hat{\symbf{F}}$ is given by the inverse of $-\nablasub{\hat{\symbf{F}}} \mathcal{L}$. The standard errors for each of $\hat{\symbf{F}}$ are the square roots of the diagonal elements of the covariance matrix, as required. Alternatively, when \textit{--se-method oim-drop-zeros} is passed, columns/rows of $\nablasub{\hat{\symbf{F}}} \mathcal{L}$ corresponding with intervals where $\hat{s}_i = 0$ are dropped before the matrix is inverted, which enables greater numerical stability but whose theoretical justification is not well explored [3].
|
||||
The covariance matrix of $\hat{\symbf{F}}$ is given by the inverse of $-\nablasub{\hat{\symbf{F}}} \mathcal{L}$. The standard errors for each of $\hat{\symbf{F}}$ are the square roots of the diagonal elements of the covariance matrix, as required.
|
||||
|
||||
Alternatively, when \textit{--se-method oim-drop-zeros} is passed, columns/rows of $\nablasub{\hat{\symbf{F}}} \mathcal{L}$ corresponding with intervals where $\hat{s}_i = 0$ are dropped before the matrix is inverted, which enables greater numerical stability but whose theoretical justification is not well explored [3].
|
||||
|
||||
In the further alternative, when \textit{--se-method likelihood-ratio} is passed, confidence intervals for $\hat{\symbf{F}}$ are computed by inverting a likelihood ratio test at each point, as described by Goodall, Dunn \& Babiker~[3].
|
||||
|
||||
{\vspace{0.5cm}\scshape\centering References\par}
|
||||
%{\pagebreak\scshape\centering References\par}
|
||||
|
259
src/turnbull.rs
259
src/turnbull.rs
@ -15,13 +15,14 @@
|
||||
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
const Z_97_5: f64 = 1.959964; // This is the limit of resolution for an f64
|
||||
const CHI2_1DF_95: f64 = 3.8414588;
|
||||
|
||||
use core::mem::MaybeUninit;
|
||||
use std::io;
|
||||
|
||||
use clap::{Args, ValueEnum};
|
||||
use csv::{Reader, StringRecord};
|
||||
use indicatif::{ProgressBar, ProgressDrawTarget, ProgressStyle};
|
||||
use indicatif::{ParallelProgressIterator, ProgressBar, ProgressDrawTarget, ProgressStyle};
|
||||
use nalgebra::{Const, DMatrix, DVector, Dyn, MatrixXx2};
|
||||
use prettytable::{Table, format, row};
|
||||
use rayon::prelude::*;
|
||||
@ -67,6 +68,7 @@ enum OutputFormat {
|
||||
pub enum SEMethod {
|
||||
OIM,
|
||||
OIMDropZeros,
|
||||
LikelihoodRatio,
|
||||
}
|
||||
|
||||
pub fn main(args: TurnbullArgs) {
|
||||
@ -91,18 +93,37 @@ pub fn main(args: TurnbullArgs) {
|
||||
.build();
|
||||
summary.set_format(format);
|
||||
|
||||
summary.set_titles(row!["Time", c->"Surv. Prob.", c->"Std Err.", H2c->"(95% CI)"]);
|
||||
summary.add_row(row![r->"0.000", r->"1.00000", "", "", ""]);
|
||||
for (i, prob) in result.survival_prob.iter().enumerate() {
|
||||
summary.add_row(row![
|
||||
r->format!("{:.3}", result.failure_intervals[i].1),
|
||||
r->format!("{:.5}", prob),
|
||||
r->format!("{:.5}", result.survival_prob_se[i]),
|
||||
r->format!("({:.5},", prob - Z_97_5 * result.survival_prob_se[i]),
|
||||
format!("{:.5})", prob + Z_97_5 * result.survival_prob_se[i]),
|
||||
]);
|
||||
if let Some(survival_prob_se) = &result.survival_prob_se {
|
||||
// Standard errors available
|
||||
summary.set_titles(row!["Time", c->"Surv. Prob.", c->"Std Err.", H2c->"(95% CI)"]);
|
||||
summary.add_row(row![r->"0.000", r->"1.00000", "", "", ""]);
|
||||
for (i, prob) in result.survival_prob.iter().enumerate() {
|
||||
summary.add_row(row![
|
||||
r->format!("{:.3}", result.failure_intervals[i].1),
|
||||
r->format!("{:.5}", prob),
|
||||
r->format!("{:.5}", survival_prob_se[i]),
|
||||
r->format!("({:.5},", prob - Z_97_5 * survival_prob_se[i]),
|
||||
format!("{:.5})", prob + Z_97_5 * survival_prob_se[i]),
|
||||
]);
|
||||
}
|
||||
summary.add_row(row![r->format!("{:.3}", result.failure_intervals.last().unwrap().1), r->"0.00000", "", "", ""]);
|
||||
} else {
|
||||
// No standard errors, just print CIs
|
||||
let survival_prob_ci = result.survival_prob_ci.as_ref().unwrap();
|
||||
|
||||
summary.set_titles(row!["Time", c->"Surv. Prob.", H2c->"(95% CI)"]);
|
||||
summary.add_row(row![r->"0.000", r->"1.00000", "", ""]);
|
||||
for (i, prob) in result.survival_prob.iter().enumerate() {
|
||||
summary.add_row(row![
|
||||
r->format!("{:.3}", result.failure_intervals[i].1),
|
||||
r->format!("{:.5}", prob),
|
||||
r->format!("({:.5},", survival_prob_ci[i].0),
|
||||
format!("{:.5})", survival_prob_ci[i].1),
|
||||
]);
|
||||
}
|
||||
summary.add_row(row![r->format!("{:.3}", result.failure_intervals.last().unwrap().1), r->"0.00000", "", ""]);
|
||||
}
|
||||
summary.add_row(row![r->format!("{:.3}", result.failure_intervals.last().unwrap().1), r->"0.00000", "", "", ""]);
|
||||
|
||||
summary.printstd();
|
||||
}
|
||||
OutputFormat::Json => {
|
||||
@ -170,6 +191,12 @@ impl TurnbullData {
|
||||
}
|
||||
}
|
||||
|
||||
/// Constrains the survival probability at a particular time s[time_index] == survival_prob
|
||||
struct Constraint {
|
||||
time_index: usize,
|
||||
survival_prob: f64,
|
||||
}
|
||||
|
||||
pub fn fit_turnbull(data_times: MatrixXx2<f64>, progress_bar: ProgressBar, max_iterations: u32, ll_tolerance: f64, se_method: SEMethod, zero_tolerance: f64) -> TurnbullResult {
|
||||
// ----------------------
|
||||
// Prepare for regression
|
||||
@ -195,7 +222,7 @@ pub fn fit_turnbull(data_times: MatrixXx2<f64>, progress_bar: ProgressBar, max_i
|
||||
// Faster to repeatedly index Vec than DVector, and we don't do any matrix arithmetic, so represent this as Vec
|
||||
let p = vec![1.0 / intervals.len() as f64; intervals.len()];
|
||||
|
||||
let mut data = TurnbullData {
|
||||
let data = TurnbullData {
|
||||
data_time_interval_indexes: data_time_interval_indexes,
|
||||
intervals: intervals,
|
||||
};
|
||||
@ -208,7 +235,7 @@ pub fn fit_turnbull(data_times: MatrixXx2<f64>, progress_bar: ProgressBar, max_i
|
||||
progress_bar.reset();
|
||||
progress_bar.println("Running EM-ICM algorithm to fit Turnbull estimator");
|
||||
|
||||
let (p, ll) = fit_turnbull_estimator(&mut data, progress_bar.clone(), max_iterations, ll_tolerance, p);
|
||||
let (p, ll) = fit_turnbull_estimator(&data, progress_bar.clone(), max_iterations, ll_tolerance, p, None);
|
||||
|
||||
// Get survival probabilities (1 - cumulative failure probability), excluding at t=0 (prob=1) and t=inf (prob=0)
|
||||
let mut survival_prob: Vec<f64> = Vec::with_capacity(data.num_intervals() - 1);
|
||||
@ -221,42 +248,31 @@ pub fn fit_turnbull(data_times: MatrixXx2<f64>, progress_bar: ProgressBar, max_i
|
||||
// --------------------------------------------------
|
||||
// Compute standard errors for survival probabilities
|
||||
|
||||
let hessian = compute_hessian(&data, &p);
|
||||
|
||||
let mut survival_prob_se: DVector<f64>;
|
||||
let mut survival_prob_se = None;
|
||||
let mut survival_prob_ci = None;
|
||||
|
||||
match se_method {
|
||||
SEMethod::OIM => {
|
||||
// Compute covariance matrix as inverse of negative Hessian
|
||||
let vcov = -hessian.try_inverse().expect("Matrix not invertible");
|
||||
survival_prob_se = vcov.diagonal().apply_into(|x| { *x = x.sqrt(); });
|
||||
survival_prob_se = Some(survival_prob_oim_se(&data, &p, zero_tolerance, false));
|
||||
}
|
||||
SEMethod::OIMDropZeros => {
|
||||
// Drop rows/columns of Hessian corresponding to intervals with zero failure probability
|
||||
let nonzero_intervals: Vec<usize> = (0..(data.num_intervals() - 1)).filter(|i| p[*i] > zero_tolerance).collect();
|
||||
survival_prob_se = Some(survival_prob_oim_se(&data, &p, zero_tolerance, true));
|
||||
}
|
||||
SEMethod::LikelihoodRatio => {
|
||||
let s = p_to_s(&p);
|
||||
let oim_se = survival_prob_oim_se(&data, &p, zero_tolerance, true);
|
||||
|
||||
let mut hessian_nonzero: DMatrix<f64> = DMatrix::zeros(nonzero_intervals.len(), nonzero_intervals.len());
|
||||
for (nonzero_index1, orig_index1) in nonzero_intervals.iter().enumerate() {
|
||||
hessian_nonzero[(nonzero_index1, nonzero_index1)] = hessian[(*orig_index1, *orig_index1)];
|
||||
for (nonzero_index2, orig_index2) in nonzero_intervals.iter().enumerate().take(nonzero_index1) {
|
||||
hessian_nonzero[(nonzero_index1, nonzero_index2)] = hessian[(*orig_index1, *orig_index2)];
|
||||
hessian_nonzero[(nonzero_index2, nonzero_index1)] = hessian[(*orig_index2, *orig_index1)];
|
||||
}
|
||||
}
|
||||
progress_bar.set_style(ProgressStyle::with_template("[{elapsed_precise}] {bar:40} CI {pos}/{len}").unwrap());
|
||||
progress_bar.set_length(data.num_intervals() as u64 - 1);
|
||||
progress_bar.reset();
|
||||
progress_bar.println("Computing confidence intervals by likelihood ratio test");
|
||||
|
||||
let vcov = -hessian_nonzero.try_inverse().expect("Matrix not invertible");
|
||||
let survival_prob_se_nonzero = vcov.diagonal().apply_into(|x| { *x = x.sqrt(); });
|
||||
let confidence_intervals = (1..data.num_intervals()).into_par_iter()
|
||||
.map(|j| survival_prob_likelihood_ratio_ci(&data, ProgressBar::hidden(), max_iterations, ll_tolerance, &p, ll, &s, &oim_se, j))
|
||||
.progress_with(progress_bar.clone())
|
||||
.collect();
|
||||
|
||||
survival_prob_se = DVector::zeros(data.num_intervals() - 1);
|
||||
let mut nonzero_index = 0;
|
||||
for orig_index in 0..(data.num_intervals() - 1) {
|
||||
if nonzero_intervals.contains(&orig_index) {
|
||||
survival_prob_se[orig_index] = survival_prob_se_nonzero[nonzero_index];
|
||||
nonzero_index += 1;
|
||||
} else {
|
||||
survival_prob_se[orig_index] = survival_prob_se[orig_index - 1];
|
||||
}
|
||||
}
|
||||
survival_prob_ci = Some(confidence_intervals);
|
||||
}
|
||||
}
|
||||
|
||||
@ -264,7 +280,8 @@ pub fn fit_turnbull(data_times: MatrixXx2<f64>, progress_bar: ProgressBar, max_i
|
||||
failure_intervals: data.intervals,
|
||||
failure_prob: p,
|
||||
survival_prob: survival_prob,
|
||||
survival_prob_se: survival_prob_se.data.as_vec().clone(),
|
||||
survival_prob_se: survival_prob_se,
|
||||
survival_prob_ci: survival_prob_ci,
|
||||
ll_model: ll,
|
||||
};
|
||||
}
|
||||
@ -286,7 +303,7 @@ fn get_turnbull_intervals(data_times: &MatrixXx2<f64>) -> Vec<(f64, f64)> {
|
||||
return intervals;
|
||||
}
|
||||
|
||||
fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, max_iterations: u32, ll_tolerance: f64, mut p: Vec<f64>) -> (Vec<f64>, f64) {
|
||||
fn fit_turnbull_estimator(data: &TurnbullData, progress_bar: ProgressBar, max_iterations: u32, ll_tolerance: f64, mut p: Vec<f64>, constraint: Option<Constraint>) -> (Vec<f64>, f64) {
|
||||
// Pre-compute S, the survival probability at the start of each interval
|
||||
let mut s = p_to_s(&p);
|
||||
|
||||
@ -299,7 +316,7 @@ fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, ma
|
||||
// -------
|
||||
// EM step
|
||||
|
||||
let p_after_em = do_em_step(data, &p, &s);
|
||||
let p_after_em = do_em_step(data, &p, &s, &constraint);
|
||||
let s_after_em = p_to_s(&p_after_em);
|
||||
|
||||
let likelihood_obs_after_em = get_likelihood_obs(data, &s_after_em);
|
||||
@ -311,7 +328,7 @@ fn fit_turnbull_estimator(data: &mut TurnbullData, progress_bar: ProgressBar, ma
|
||||
// --------
|
||||
// ICM step
|
||||
|
||||
let (p_new, s_new, ll_model_new) = do_icm_step(data, &p, &s, ll_tolerance, ll_model_after_em);
|
||||
let (p_new, s_new, ll_model_new) = do_icm_step(data, &p, &s, ll_tolerance, &constraint, ll_model_after_em);
|
||||
|
||||
let ll_change = ll_model_new - ll_model;
|
||||
let converged = ll_change <= ll_tolerance;
|
||||
@ -369,7 +386,7 @@ fn get_likelihood_obs(data: &TurnbullData, s: &Vec<f64>) -> Vec<f64> {
|
||||
.collect(); // TODO: Return iterator directly
|
||||
}
|
||||
|
||||
fn do_em_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>) -> Vec<f64> {
|
||||
fn do_em_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>, constraint: &Option<Constraint>) -> Vec<f64> {
|
||||
// Compute contributions to m
|
||||
let mut m_contrib = vec![0.0; data.num_intervals()];
|
||||
for (idx_left, idx_right) in data.data_time_interval_indexes.iter() {
|
||||
@ -395,12 +412,20 @@ fn do_em_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>) -> Vec<f64> {
|
||||
|
||||
// Update p
|
||||
// p := p * m
|
||||
let p_new = p.par_iter().zip(m.into_par_iter()).map(|(p_j, m_j)| p_j * m_j).collect();
|
||||
let mut p_new: Vec<f64> = p.par_iter().zip(m.into_par_iter()).map(|(p_j, m_j)| p_j * m_j).collect();
|
||||
|
||||
// Constrain if required
|
||||
if let Some(c) = &constraint {
|
||||
let cur_fail_prob: f64 = p_new[0..c.time_index].iter().copied().sum();
|
||||
// Not sure why borrow checker thinks there is an unused borrow here...
|
||||
let _ = &mut p_new[0..c.time_index].iter_mut().for_each(|x| *x *= (1.0 - c.survival_prob) / cur_fail_prob); // Desired failure probability over current failure probability
|
||||
let _ = &mut p_new[c.time_index..].iter_mut().for_each(|x| *x *= c.survival_prob / (1.0 - cur_fail_prob));
|
||||
}
|
||||
|
||||
return p_new;
|
||||
}
|
||||
|
||||
fn do_icm_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>, ll_tolerance: f64, ll_model: f64) -> (Vec<f64>, Vec<f64>, f64) {
|
||||
fn do_icm_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>, ll_tolerance: f64, constraint: &Option<Constraint>, ll_model: f64) -> (Vec<f64>, Vec<f64>, f64) {
|
||||
// Compute Λ, the cumulative hazard
|
||||
// Since Λ = -inf when survival is 1, and Λ = inf when survival is 0, these are omitted
|
||||
// The entry at lambda[j] corresponds to the survival immediately before time point j + 1
|
||||
@ -474,6 +499,17 @@ fn do_icm_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>, ll_tolerance: f6
|
||||
ll_model_new = likelihood_obs_new.iter().map(|l| l.ln()).sum();
|
||||
|
||||
if ll_model_new > ll_model {
|
||||
// Constrain if required
|
||||
if let Some(c) = constraint {
|
||||
let cur_survival_prob = s_new[c.time_index];
|
||||
let _ = &mut p_new[0..c.time_index].iter_mut().for_each(|x| *x *= (1.0 - c.survival_prob) / (1.0 - cur_survival_prob)); // Desired failure probability over current failure probability
|
||||
let _ = &mut p_new[c.time_index..].iter_mut().for_each(|x| *x *= c.survival_prob / cur_survival_prob);
|
||||
|
||||
s_new = p_to_s(&p_new);
|
||||
let likelihood_obs_new = get_likelihood_obs(data, &s_new);
|
||||
ll_model_new = likelihood_obs_new.iter().map(|l| l.ln()).sum();
|
||||
}
|
||||
|
||||
return (p_new, s_new, ll_model_new);
|
||||
}
|
||||
|
||||
@ -491,6 +527,44 @@ fn do_icm_step(data: &TurnbullData, p: &Vec<f64>, s: &Vec<f64>, ll_tolerance: f6
|
||||
}
|
||||
}
|
||||
|
||||
fn survival_prob_oim_se(data: &TurnbullData, p: &Vec<f64>, zero_tolerance: f64, drop_zeros: bool) -> Vec<f64> {
|
||||
let hessian = compute_hessian(&data, &p);
|
||||
|
||||
if drop_zeros {
|
||||
// Drop rows/columns of Hessian corresponding to intervals with zero failure probability
|
||||
let nonzero_intervals: Vec<usize> = (0..(data.num_intervals() - 1)).filter(|i| p[*i] > zero_tolerance).collect();
|
||||
|
||||
let mut hessian_nonzero: DMatrix<f64> = DMatrix::zeros(nonzero_intervals.len(), nonzero_intervals.len());
|
||||
for (nonzero_index1, orig_index1) in nonzero_intervals.iter().enumerate() {
|
||||
hessian_nonzero[(nonzero_index1, nonzero_index1)] = hessian[(*orig_index1, *orig_index1)];
|
||||
for (nonzero_index2, orig_index2) in nonzero_intervals.iter().enumerate().take(nonzero_index1) {
|
||||
hessian_nonzero[(nonzero_index1, nonzero_index2)] = hessian[(*orig_index1, *orig_index2)];
|
||||
hessian_nonzero[(nonzero_index2, nonzero_index1)] = hessian[(*orig_index2, *orig_index1)];
|
||||
}
|
||||
}
|
||||
|
||||
let vcov = -hessian_nonzero.try_inverse().expect("Matrix not invertible");
|
||||
let survival_prob_se_nonzero = vcov.diagonal().apply_into(|x| { *x = x.sqrt(); });
|
||||
|
||||
let mut se = vec![0.0; data.num_intervals() - 1];
|
||||
let mut nonzero_index = 0;
|
||||
for orig_index in 0..(data.num_intervals() - 1) {
|
||||
if nonzero_intervals.contains(&orig_index) {
|
||||
se[orig_index] = survival_prob_se_nonzero[nonzero_index];
|
||||
nonzero_index += 1;
|
||||
} else {
|
||||
se[orig_index] = se[orig_index - 1];
|
||||
}
|
||||
}
|
||||
return se;
|
||||
} else {
|
||||
// Compute covariance matrix as inverse of negative Hessian
|
||||
let vcov = -hessian.try_inverse().expect("Matrix not invertible");
|
||||
let se = vcov.diagonal().apply_into(|x| { *x = x.sqrt(); });
|
||||
return se.data.as_vec().clone();
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_hessian(data: &TurnbullData, p: &Vec<f64>) -> DMatrix<f64> {
|
||||
let mut hessian: DMatrix<f64> = DMatrix::zeros(data.num_intervals() - 1, data.num_intervals() - 1);
|
||||
|
||||
@ -539,11 +613,96 @@ fn compute_hessian(data: &TurnbullData, p: &Vec<f64>) -> DMatrix<f64> {
|
||||
return hessian;
|
||||
}
|
||||
|
||||
fn survival_prob_likelihood_ratio_ci(data: &TurnbullData, progress_bar: ProgressBar, max_iterations: u32, ll_tolerance: f64, p: &Vec<f64>, ll_model: f64, s: &Vec<f64>, oim_se: &Vec<f64>, time_index: usize) -> (f64, f64) {
|
||||
// Compute lower confidence limit
|
||||
let mut ci_bound_lower = 0.0;
|
||||
let mut ci_bound_upper = s[time_index];
|
||||
let mut ci_estimate = s[time_index] - Z_97_5 * oim_se[time_index - 1];
|
||||
if ci_estimate < 0.0 {
|
||||
ci_estimate = (ci_bound_lower + ci_bound_upper) / 2.0;
|
||||
}
|
||||
|
||||
let mut iteration = 1;
|
||||
loop {
|
||||
// Get starting guess, constrained at time_index
|
||||
let mut p_test = p.clone();
|
||||
let cur_survival_prob = s[time_index];
|
||||
let _ = &mut p_test[0..time_index].iter_mut().for_each(|x| *x *= (1.0 - ci_estimate) / (1.0 - cur_survival_prob)); // Desired failure probability over current failure probability
|
||||
let _ = &mut p_test[time_index..].iter_mut().for_each(|x| *x *= ci_estimate / cur_survival_prob);
|
||||
|
||||
let (_p, ll_test) = fit_turnbull_estimator(data, progress_bar.clone(), max_iterations, ll_tolerance, p_test, Some(Constraint { time_index: time_index, survival_prob: ci_estimate }));
|
||||
let lr_statistic = 2.0 * (ll_model - ll_test);
|
||||
|
||||
if (lr_statistic - CHI2_1DF_95).abs() < ll_tolerance {
|
||||
// Converged!
|
||||
break;
|
||||
} else if lr_statistic > CHI2_1DF_95 {
|
||||
// CI is too wide
|
||||
ci_bound_lower = ci_estimate;
|
||||
} else {
|
||||
// CI is too narrow
|
||||
ci_bound_upper = ci_estimate;
|
||||
}
|
||||
|
||||
ci_estimate = (ci_bound_lower + ci_bound_upper) / 2.0;
|
||||
|
||||
iteration += 1;
|
||||
if iteration > max_iterations {
|
||||
panic!("Exceeded --max-iterations");
|
||||
}
|
||||
}
|
||||
|
||||
let ci_lower = ci_estimate;
|
||||
|
||||
// Compute upper confidence limit
|
||||
ci_bound_lower = s[time_index];
|
||||
ci_bound_upper = 1.0;
|
||||
ci_estimate = s[time_index] + Z_97_5 * oim_se[time_index - 1];
|
||||
if ci_estimate > 1.0 {
|
||||
ci_estimate = (ci_bound_lower + ci_bound_upper) / 2.0;
|
||||
}
|
||||
|
||||
let mut iteration = 1;
|
||||
loop {
|
||||
// Get starting guess, constrained at time_index
|
||||
let mut p_test = p.clone();
|
||||
let cur_survival_prob = s[time_index];
|
||||
let _ = &mut p_test[0..time_index].iter_mut().for_each(|x| *x *= (1.0 - ci_estimate) / (1.0 - cur_survival_prob)); // Desired failure probability over current failure probability
|
||||
let _ = &mut p_test[time_index..].iter_mut().for_each(|x| *x *= ci_estimate / cur_survival_prob);
|
||||
|
||||
let (_p, ll_test) = fit_turnbull_estimator(data, progress_bar.clone(), max_iterations, ll_tolerance, p_test, Some(Constraint { time_index: time_index, survival_prob: ci_estimate }));
|
||||
let lr_statistic = 2.0 * (ll_model - ll_test);
|
||||
|
||||
if (lr_statistic - CHI2_1DF_95).abs() < ll_tolerance {
|
||||
// Converged!
|
||||
break;
|
||||
} else if lr_statistic > CHI2_1DF_95 {
|
||||
// CI is too wide
|
||||
ci_bound_upper = ci_estimate;
|
||||
} else {
|
||||
// CI is too narrow
|
||||
ci_bound_lower = ci_estimate;
|
||||
}
|
||||
|
||||
ci_estimate = (ci_bound_lower + ci_bound_upper) / 2.0;
|
||||
|
||||
iteration += 1;
|
||||
if iteration > max_iterations {
|
||||
panic!("Exceeded --max-iterations");
|
||||
}
|
||||
}
|
||||
|
||||
let ci_upper = ci_estimate;
|
||||
|
||||
return (ci_lower, ci_upper);
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct TurnbullResult {
|
||||
pub failure_intervals: Vec<(f64, f64)>,
|
||||
pub failure_prob: Vec<f64>,
|
||||
pub survival_prob: Vec<f64>,
|
||||
pub survival_prob_se: Vec<f64>,
|
||||
pub survival_prob_se: Option<Vec<f64>>,
|
||||
pub survival_prob_ci: Option<Vec<(f64, f64)>>,
|
||||
pub ll_model: f64,
|
||||
}
|
||||
|
@ -54,13 +54,14 @@ fn test_turnbull_minitab() {
|
||||
assert!(abs_diff(result.survival_prob[5], 0.431840) < 0.000001);
|
||||
assert!(abs_diff(result.survival_prob[6], 0.200191) < 0.000001);
|
||||
|
||||
assert!(abs_diff(result.survival_prob_se[0], 0.0016488) < 0.0000001);
|
||||
assert!(abs_diff(result.survival_prob_se[1], 0.0035430) < 0.0000001);
|
||||
assert!(abs_diff(result.survival_prob_se[2], 0.0064517) < 0.0000001);
|
||||
assert!(abs_diff(result.survival_prob_se[3], 0.0109856) < 0.0000001);
|
||||
assert!(abs_diff(result.survival_prob_se[4], 0.0143949) < 0.0000001);
|
||||
assert!(abs_diff(result.survival_prob_se[5], 0.0152936) < 0.0000001);
|
||||
assert!(abs_diff(result.survival_prob_se[6], 0.0123546) < 0.0000001);
|
||||
let survival_prob_se = result.survival_prob_se.as_ref().unwrap();
|
||||
assert!(abs_diff(survival_prob_se[0], 0.0016488) < 0.0000001);
|
||||
assert!(abs_diff(survival_prob_se[1], 0.0035430) < 0.0000001);
|
||||
assert!(abs_diff(survival_prob_se[2], 0.0064517) < 0.0000001);
|
||||
assert!(abs_diff(survival_prob_se[3], 0.0109856) < 0.0000001);
|
||||
assert!(abs_diff(survival_prob_se[4], 0.0143949) < 0.0000001);
|
||||
assert!(abs_diff(survival_prob_se[5], 0.0152936) < 0.0000001);
|
||||
assert!(abs_diff(survival_prob_se[6], 0.0123546) < 0.0000001);
|
||||
}
|
||||
|
||||
fn abs_diff(a: f64, b: f64) -> f64 {
|
||||
|
Loading…
x
Reference in New Issue
Block a user